

GeoAlchemy 2 Documentation

Using SQLAlchemy with Spatial Databases.

GeoAlchemy 2 provides extensions to SQLAlchemy [http://sqlalchemy.org] for
working with spatial databases.

GeoAlchemy 2 focuses on PostGIS [http://postgis.net/]. PostGIS 1.5 and
PostGIS 2 are supported.

Note

GeoAlchemy 2 doesn’t currently support other dialects than
PostgreSQL/PostGIS. Supporting Oracle Locator in the previous series was
the main contributor to code complexity. So it is currently not clear
whether we want to go there again.

GeoAlchemy 2 aims to be simpler than its predecessor, GeoAlchemy [https://pypi.python.org/pypi/GeoAlchemy]. Simpler to use, and simpler
to maintain.

Requirements

GeoAlchemy 2 requires SQLAlchemy 0.8. GeoAlchemy 2 does not work with
SQLAlchemy 0.7 and lower.

Installation

GeoAlchemy 2 is available on the Python Package Index [https://pypi.python.org/pypi/GeoAlchemy2/]. So it can be installed
with the standard pip [http://www.pip-installer.org] or
easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall]
tools.

What’s New in GeoAlchemy 2

	GeoAlchemy 2 supports PostGIS’ geometry type, as well as the geography
and raster types.

	The first series had its own namespace for spatial functions. With GeoAlchemy
2, spatial functions are called like any other SQLAlchemy function, using
func, which is SQLAlchemy’s standard way [http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func]
of calling SQL functions.

	GeoAlchemy 2 works with SQLAlchemy’s ORM, as well as with SQLAlchemy’s SQL
Expression Language (a.k.a the SQLAlchemy Core). (This is thanks to
SQLAlchemy’s new type-level comparator system [http://docs.sqlalchemy.org/en/latest/core/types.html?highlight=comparator_factory#types-operators].)

	GeoAlchemy 2 supports reflection [http://docs.sqlalchemy.org/en/latest/core/schema.html#metadata-reflection]
of geometry and geography columns.

	GeoAlchemy 2 adds to_shape, from_shape functions for a better
integration with Shapely [http://pypi.python.org/pypi/Shapely].

See the Migrate to GeoAlchemy 2 page for details on how to migrate a GeoAlchemy
application to GeoAlchemy 2.

Tutorials

GeoAlchemy 2 works with both SQLAlchemy’s Object Relational Mapping (ORM) and
SQL Expression Language. This documentation provides a tutorial for each
system. If you’re new to GeoAlchemy 2 start with this.

	ORM Tutorial

	Core Tutorial

Reference Documentation

	Types

	Elements

	Spatial Functions

	Spatial Operators

	Shapely Integration

Development

The code is available on GitHub: https://github.com/geoalchemy/geoalchemy2.

Contributors:

	Eric Lemoine, Camptocamp SA (https://github.com/elemoine)

	Dolf Andringa (https://github.com/dolfandringa)

	Frédéric Junod, Camptocamp SA (https://github.com/fredj)

	ijl (https://github.com/ijl)

	Loïc Gasser (https://github.com/loicgasser)

	Marcel Radischat (https://github.com/quiqua)

	rapto (https://github.com/rapto)

	Tobias Bieniek (https://github.com/Turbo87)

	Tom Payne (https://github.com/twpayne)

Many thanks to Mike Bayer for his guidance and support! He also fostered [https://groups.google.com/forum/?fromgroups=#!topic/geoalchemy/k3PmQOB_FX4]
the birth of GeoAlchemy 2.

Indices and tables

	Index

	Module Index

	Search Page

Migrate to GeoAlchemy 2

This section describes how to migrate an application from the first
series of GeoAlchemy to GeoAlchemy 2.

Defining Geometry Columns

The first series has specific types like Point, LineString and
Polygon. These are gone, the geoalchemy2.types.Geometry type
should be used instead, and a geometry_type can be passed to it.

So, for example, a polygon column that used to be defined like this:

geom = Column(Polygon)

is now defined like this:

geom = Column(Geometry('POLYGON'))

This change is related to GeoAlchemy 2 supporting the
geoalchemy2.types.Geography type.

Calling Spatial Functions

The first series has its own namespace/object for calling spatial
functions, namely geoalchemy.functions. With GeoAlchemy 2,
SQLAlchemy’s func object should be used.

For example, the expression

functions.buffer(functions.centroid(box), 10, 2)

would be rewritten to this with GeoAlchemy 2:

func.ST_Buffer(func.ST_Centroid(box), 10, 2)

Also, as the previous example hinted it, the names of spatial functions are now
all prefixed with ST_. (This is to be consistent with PostGIS and the
SQL-MM standard.) The ST_ prefix should be used even when applying
spatial functions to columns, geoalchemy2.elements.WKTElement,
or geoalchemy2.elements.WKTElement objects:

Lake.geom.ST_Buffer(10, 2)
lake_table.c.geom.ST_Buffer(10, 2)
lake.geom.ST_Buffer(10, 2)

WKB and WKT Elements

The first series has classes like PersistentSpatialElement,
PGPersistentSpatialElement, WKTSpatialElement.

They’re all gone, and replaced by two classes only:
geoalchemy2.elements.WKTElement and
geoalchemy2.elements.WKBElement.

geoalchemy2.elements.WKTElement is to be used in expressions
where a geometry with a specific SRID should be specified. For example:

Lake.geom.ST_Touches(WKTElement('POINT(1 1)', srid=4326))

If no SRID need be specified, a string can used directly:

Lake.geom.ST_Touches('POINT(1 1)')

	geoalchemy2.elements.WKTElement literally replaces the
first series’ WKTSpatialElement.

	geoalchemy2.elements.WKBElement is the type into which GeoAlchemy
2 converts geometry values read from the database.

For example, the geom
attributes of Lake objects loaded from the database would be references
to geoalchemy2.elements.WKBElement objects. This class replaces
the first series’ PersistentSpatialElement classes.

ORM Tutorial

(This tutorial is greatly inspired by the SQLAlchemy ORM Tutorial [http://docs.sqlalchemy.org/en/latest/orm/tutorial.html], which is
recommended reading, eventually.)

GeoAlchemy does not provide an Object Relational Mapper (ORM), but works well
with the SQLAlchemy ORM. This tutorial shows how to use the SQLAlchemy ORM with
spatial tables, using GeoAlchemy.

Connect to the DB

For this tutorial we will use a PostGIS 2 database. To connect we use
SQLAlchemy’s create_engine() function:

>>> from sqlalchemy import create_engine
>>> engine = create_engine('postgresql://gis:gis@localhost/gis', echo=True)

In this example the name of the database, the database user, and the database
password, is gis.

The echo flag is a shortcut to setting up SQLAlchemy logging, which is
accomplished via Python’s standard logging module. With it is enabled, we’ll
see all the generated SQL produced.

The return value of create_engine is an Engine object, which
represents the core interface to the database.

Declare a Mapping

When using the ORM, the configurational process starts by describing the
database tables we’ll be dealing with, and then by defining our own classes
which will be mapped to those tables. In modern SQLAlchemy, these two tasks are
usually performed together, using a system known as Declarative, which
allows us to create classes that include directives to describe the actual
database table they will be mapped to.

>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column, Integer, String
>>> from geoalchemy2 import Geometry
>>>
>>> Base = declarative_base()
>>>
>>> class Lake(Base):
... __tablename__ = 'lake'
... id = Column(Integer, primary_key=True)
... name = Column(String)
... geom = Column(Geometry('POLYGON'))

The Lake class establishes details about the table being mapped, including
the name of the table denoted by __tablename__, and three columns id,
name, and geom. The id column will be the primary key of the table.
The geom column is a geoalchemy2.types.Geometry column whose
geometry_type is POLYGON.

Create the Table in the Database

The Lake class has a corresponding Table object representing
the database table. This Table object was created automatically
by SQLAlchemy, it is referenced to by the Lake.__table__ property:

>>> Lake.__table__
Table('lake', MetaData(bind=None), Column('id', Integer(), table=<lake>,
primary_key=True, nullable=False), Column('name', String(), table=<lake>),
Column('geom', Polygon(srid=4326), table=<lake>), schema=None)

To create the lake table in the database:

>>> Lake.__table__.create(engine)

If we wanted to drop the table we’d use:

>>> Lake.__table__.drop(engine)

Create an Instance of the Mapped Class

With the mapping declared, we can create a Lake object:

>>> lake = Lake(name='Majeur', geom='POLYGON((0 0,1 0,1 1,0 1,0 0))')
>>> lake.geom
'POLYGON((0 0,1 0,1 1,0 1,0 0))'
>>> str(lake.id)
'None'

A WKT is passed to the Lake constructor for its geometry. This WKT
represents the shape of our lake. Since we have not yet told SQLAlchemy
to persist the lake object, its id is None.

The EWKT (Extented WKT) format is also supported. So, for example, if the
spatial reference system for the geometry column were 4326, the string
SRID=4326;POLYGON((0 0,1 0,1,0 1,0 0)) could be used as the geometry
representation.

Create a Session

The ORM interacts with the database through a Session. Let’s
create a Session class:

>>> from sqlalchemy.orm import sessionmaker
>>> Session = sessionmaker(bind=engine)

This custom-made Session class will create new Session objects which
are bound to our database. Then, whenever we need to have a conversation with
the database, we instantiate a Session:

>>> session = Session()

The above Session is associated with our PostgreSQL Engine, but
it hasn’t opened any connection yet.

Add New Objects

To persist our Lake object, we add() it to the Session:

>>> session.add(lake)

At this point the lake object has been added to the Session, but no SQL
has been issued to the database. The object is in a pending state. To persist
the object a flush or commit operation must occur (commit implies flush):

>>> session.commit()

We can now query the database for Majeur:

>>> our_lake = session.query(Lake).filter_by(name='Majeur').first()
>>> our_lake.name
u'Majeur'
>>> our_lake.geom
<WKBElement at 0x9af594c; '0103000000010000000500f03f0000000000000000000000000000f03f000000000000f03f0000000000000000000000000000f03f00000000000000000000000000000000'>
>>> our_lake.id
1

our_lake.geom is a geoalchemy2.elements.WKBElement, which a type
provided by GeoAlchemy. geoalchemy2.elements.WKBElement wraps a WKB
value returned by the database.

Let’s add more lakes:

>>> session.add_all([
... Lake(name='Garde', geom='POLYGON((1 0,3 0,3 2,1 2,1 0))'),
... Lake(name='Orta', geom='POLYGON((3 0,6 0,6 3,3 3,3 0))')
...])
>>> session.commit()

Query

A Query object is created using the query() function on Session.
For example here’s a Query that loads Lake instances ordered by
their names:

>>> query = session.query(Lake).order_by(Lake.name)

Any Query is iterable:

>>> for lake in query:
... print lake.name
...
Garde
Majeur
Orta

Another way to execute the query and get a list of Lake objects involves
calling all() on the Query:

>>> lakes = session.query(Lake).order_by(Lake.name).all()

The SQLAlchemy ORM Tutorial’s Querying section [http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#querying] provides
more examples of queries.

Spatial Query

As spatial database users executing spatial queries is of a great interest to
us. There comes GeoAlchemy!

Spatial relationship

Using spatial filters in SQL SELECT queries is very common. Such queries are
performed by using spatial relationship functions, or operators, in the
WHERE clause of the SQL query.

For example, to find the Lake s that contain the point POINT(4 1),
we can use this Query:

>>> from sqlalchemy import func
>>> query = session.query(Lake).filter(
... func.ST_Contains(Lake.geom, 'POINT(4 1)'))
...
>>> for lake in query:
... print lake.name
...
Orta

GeoAlchemy allows rewriting this Query more concisely:

>>> query = session.query(Lake).filter(Lake.geom.ST_Contains('POINT(4 1)'))
>>> for lake in query:
... print lake.name
...
Orta

Here the ST_Contains function is applied to the Lake.geom column
property. In that case the column property is actually passed to the function,
as its first argument.

Here’s another spatial filtering query, based on ST_Intersects:

>>> query = session.query(Lake).filter(
... Lake.geom.ST_Intersects('LINESTRING(2 1,4 1)'))
...
>>> for lake in query:
... print lake.name
...
Garde
Orta

We can also apply relationship functions to
geoalchemy2.elements.WKBElement. For example:

>>> lake = session.query(Lake).filter_by(name='Garde').one()
>>> print session.scalar(lake.geom.ST_Intersects('LINESTRING(2 1,4 1)'))
True

session.scalar allows executing a clause and returning a scalar
value (a boolean value in this case).

The GeoAlchemy functions all start with ST_. Operators are also called as
functions, but the function names don’t include the ST_ prefix. As an
example let’s use PostGIS’ && operator, which allows testing
whether the bounding boxes of geometries intersect. GeoAlchemy provides
the intersects function for that:

>>> query = session.query
>>> query = session.query(Lake).filter(
... Lake.geom.intersects('LINESTRING(2 1,4 1)'))
...
>>> for lake in query:
... print lake.name
...
Garde
Orta

Processing and Measurement

Here’s a Query that calculates the areas of buffers for our lakes:

>>> from sqlalchemy import func
>>> query = session.query(Lake.name,
... func.ST_Area(func.ST_Buffer(Lake.geom, 2)) \
... .label('bufferarea'))
>>> for row in query:
... print '%s: %f' % (row.name, row.bufferarea)
...
Majeur: 21.485781
Garde: 32.485781
Orta: 45.485781

This Query applies the PostGIS ST_Buffer function to the geometry
column of every row of the lake table. The return value is a list of rows,
where each row is actually a tuple of two values: the lake name, and the area
of a buffer of the lake. Each tuple is actually an SQLAlchemy KeyedTuple
object, which provides property type accessors.

Again, the Query can written more concisely:

>>> query = session.query(Lake.name,
... Lake.geom.ST_Buffer(2).ST_Area().label('bufferarea'))
>>> for row in query:
... print '%s: %f' % (row.name, row.bufferarea)
...
Majeur: 21.485781
Garde: 32.485781
Orta: 45.485781

Obviously, processing and measurement functions can also be used in WHERE
clauses. For example:

>>> lake = session.query(Lake).filter(
... Lake.geom.ST_Buffer(2).ST_Area() > 33).one()
...
>>> print lake.name
Orta

And, like any other functions supported by GeoAlchemy, processing and
measurement functions can be applied to
geoalchemy2.elements.WKBElement. For example:

>>> lake = session.query(Lake).filter_by(name='Majeur').one()
>>> bufferarea = session.scalar(lake.geom.ST_Buffer(2).ST_Area())
>>> print '%s: %f' % (lake.name, bufferarea)
Majeur: 21.485781

Further Reference

	Spatial Functions Reference: Spatial Functions

	Spatial Operators Reference: Spatial Operators

	Elements Reference: Elements

Core Tutorial

(This tutorial is greatly inspired from the SQLAlchemy SQL Expression Language
Tutorial [http://docs.sqlalchemy.org/en/latest/core/tutorial.html], which is recommended reading, eventually.)

This tutorial shows how to use the SQLAlchemy Expression Language (a.k.a.
SQLAlchemy Core) with GeoAlchemy. As defined by the SQLAlchemy documentation
itself, in contrast to the ORM’s domain-centric mode of usage, the SQL
Expression Language provides a schema-centric usage paradigm.

Connect to the DB

For this tutorial we will use a PostGIS 2 database. To connect we use
SQLAlchemy’s create_engine() function:

>>> from sqlalchemy import create_engine
>>> engine = create_engine('postgresql://gis:gis@localhost/gis', echo=True)

In this example the name of the database, the database user, and the database
password, is gis.

The echo flag is a shortcut to setting up SQLAlchemy logging, which is
accomplished via Python’s standard logging module. With it is enabled, we’ll
see all the generated SQL produced.

The return value of create_engine is an Engine object, which
respresents the core interface to the database.

Define a Table

The very first object that we need to create is a Table. Here
we create a lake_table object, which will correspond to the
lake table in the database:

>>> from sqlalchemy import Table, Column, Integer, String, MetaData
>>> from geoalchemy2 import Geometry
>>>
>>> metadata = MetaData()
>>> lake_table = Table('lake', metadata,
... Column('id', Integer, primary_key=True),
... Column('name', String),
... Column('geom', Geometry('POLYGON'))
...)

This table is composed of three columns, id, name and geom. The
geom column is a geoalchemy2.types.Geometry column whose
geometry_type is POLYGON.

Any Table object is added to a MetaData object, which is a catalog of
Table objects (and other related objects).

Create the Table

With our Table being defined we’re ready (to have SQLAlchemy)
create it in the database:

>>> lake_table.create(engine)

Calling create_all() on metadata would have worked equally well:

>>> metadata.create_all(engine)

In that case every Table that’s referenced to by metadata would be
created in the database. The metadata object includes one Table here,
our now well-known lake_table object.

Insertions

We want to insert records into the lake table. For that we need to create
an Insert object. SQLAlchemy provides multiple constructs for creating an
Insert object, here’s one:

>>> ins = lake_table.insert()
>>> str(ins)
INSERT INTO lake (id, name, geom) VALUES (:id, :name, ST_GeomFromEWKT(:geom))

The geom column being a Geometry column, the :geom bind value is
wrapped in a ST_GeomFromEWKT call.

To limit the columns named in the INSERT query the values() method
can be used:

>>> ins = lake_table.insert().values(name='Majeur',
... geom='POLYGON((0 0,1 0,1 1,0 1,0 0))')
...
>>> str(ins)
INSERT INTO lake (name, geom) VALUES (:name, ST_GeomFromEWKT(:geom))

Tip

The string representation of the SQL expression does not include the
data placed in values. We got named bind parameters instead. To
view the data we can get a compiled form of the expression, and ask
for its params:

>>> ins.compile.params()
{'geom': 'POLYGON((0 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}

Up to now we’ve created an INSERT query but we haven’t sent this query to
the database yet. Before being able to send it to the database we need
a database Connection. We can get a Connection from the Engine
object we created earlier:

>>> conn = engine.connect()

We’re now ready to execute our INSERT statement:

>>> result = conn.execute(ins)

This is what the logging system should output:

INSERT INTO lake (name, geom) VALUES (%(name)s, ST_GeomFromEWKT(%(geom)s)) RETURNING lake.id
{'geom': 'POLYGON((0 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}
COMMIT

The value returned by conn.execute(), stored in result, is
a sqlalchemy.engine.ResultProxy object. In the case of an INSERT we can
get the primary key value which was generated from our statement:

>>> result.inserted_primary_key
[1]

Instead of using values() to specify our INSERT data, we can send
the data to the execute() method on Connection. So we could rewrite
things as follows:

>>> conn.execute(lake_table.insert(),
... name='Majeur', geom='POLYGON((0 0,1 0,1 1,0 1,0 0))')

Now let’s use another form, allowing to insert multiple rows at once:

>>> conn.execute(lake_table.insert(), [
... {'name': 'Garde', 'geom': 'POLYGON((1 0,3 0,3 2,1 2,1 0))'},
... {'name': 'Orta', 'geom': 'POLYGON((3 0,6 0,6 3,3 3,3 0))'}
...])
...

Tip

In the above examples the geometries are specified as WKT strings.
Specifying them as EWKT strings is also supported.

Selections

Inserting involved creating an Insert object, so it’d come to no surprise
that Selecting involves creating a Select object. The primary construct to
generate SELECT statements is SQLAlchemy`s select() function:

>>> from sqlalchemy.sql import select
>>> s = select([lake_table])
>>> str(s)
SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake

The geom column being a Geometry it is wrapped in a ST_AsEWKB
call when specified as a column in a SELECT statement.

We can now execute the statement and look at the results:

>>> result = conn.execute(s)
>>> for row in result:
... print 'name:', row['name'], '; geom:', row['geom'].desc
...
name: Majeur ; geom: 0103...
name: Garde ; geom: 0103...
name: Orta ; geom: 0103...

row['geom'] is a geoalchemy2.types.WKBElement instance. In this
example we just get an hexadecimal representation of the geometry’s WKB value
using the desc property.

Spatial Query

As spatial database users executing spatial queries is of a great interest to
us. There comes GeoAlchemy!

Spatial relationship

Using spatial filters in SQL SELECT queries is very common. Such queries are
performed by using spatial relationship functions, or operators, in the
WHERE clause of the SQL query.

For example, to find lakes that contain the point POINT(4 1),
we can use this:

>>> from sqlalchemy import func
>>> s = select([lake_table],
 func.ST_Contains(lake_table.c.geom, 'POINT(4 1)'))
>>> str(s)
SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake WHERE ST_Contains(lake.geom, :param_1)
>>> result = conn.execute(s)
>>> for row in result:
... print 'name:', row['name'], '; geom:', row['geom'].desc
...
name: Orta ; geom: 0103...

GeoAlchemy allows rewriting this more concisely:

>>> s = select([lake_table], lake_table.c.geom.ST_Contains('POINT(4 1)'))
>>> str(s)
SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake WHERE ST_Contains(lake.geom, :param_1)

Here the ST_Contains function is applied to lake.c.geom. And the
generated SQL the lake.geom column is actually passed to the
ST_Contains function as the first argument.

Here’s another spatial query, based on ST_Intersects:

 >>> s = select([lake_table],
 ... lake_table.c.geom.ST_Intersects('LINESTRING(2 1,4 1)'))
 >>> result = conn.execute(s)
 >>> for row in result:
 ... print 'name:', row['name'], '; geom:', row['geom'].desc
 ...
 name: Garde ; geom: 0103...
 name: Orta ; geom: 0103...

This query selects lakes whose geometries intersect ``LINESTRING(2 1,4 1)``.

The GeoAlchemy functions all start with ST_. Operators are also called as
functions, but the names of operator functions don’t include the ST_
prefix.

As an example let’s use PostGIS’ && operator, which allows testing
whether the bounding boxes of geometries intersect. GeoAlchemy provides the
intersects function for that:

>>> s = select([lake_table],
... lake_table.c.geom.intersects('LINESTRING(2 1,4 1)'))
>>> result = conn.execute(s)
>>> for row in result:
... print 'name:', row['name'], '; geom:', row['geom'].desc
...
name: Garde ; geom: 0103...
name: Orta ; geom: 0103...

Processing and Measurement

Here’s a Select that calculates the areas of buffers for our lakes:

>>> s = select([lake_table.c.name,
 func.ST_Area(
 lake_table.c.geom.ST_Buffer(2)).label('bufferarea')])
>>> str(s)
SELECT lake.name, ST_Area(ST_Buffer(lake.geom, %(param_1)s)) AS bufferarea FROM lake
>>> result = conn.execute(s)
>>> for row in result:
... print '%s: %f' % (row['name'], row['bufferarea'])
Majeur: 21.485781
Garde: 32.485781
Orta: 45.485781

Obviously, processing and measurement functions can also be used in WHERE
clauses. For example:

>>> s = select([lake_table.c.name],
 lake_table.c.geom.ST_Buffer(2).ST_Area() > 33)
>>> str(s)
SELECT lake.name FROM lake WHERE ST_Area(ST_Buffer(lake.geom, :param_1)) > :ST_Area_1
>>> result = conn.execute(s)
>>> for row in result:
... print row['name']
Orta

And, like any other functions supported by GeoAlchemy, processing and
measurement functions can be applied to
geoalchemy2.elements.WKBElement. For example:

>>> s = select([lake_table], lake_table.c.name == 'Majeur')
>>> result = conn.execute(s)
>>> lake = result.fetchone()
>>> bufferarea = conn.scalar(lake[lake_table.c.geom].ST_Buffer(2).ST_Area())
>>> print '%s: %f' % (lake['name'], bufferarea)
Majeur: 21.485781

Further Reference

	Spatial Functions Reference: Spatial Functions

	Spatial Operators Reference: Spatial Operators

	Elements Reference: Elements

Types

This module defines the geoalchemy2.types.Geometry,
geoalchemy2.types.Geography, and geoalchemy2.types.Raster
classes, that are used when defining geometry, geography and raster
columns/properties in models.

Reference

	
class geoalchemy2.types.CompositeType

	Bases: sqlalchemy.sql.type_api.UserDefinedType

A wrapper for geoalchemy2.elements.CompositeElement, that can be
used as the return type in PostgreSQL functions that return composite
values.

This is used as the base class of geoalchemy2.types.GeometryDump.

	
typemap = {}

	Dictionary used for defining the content types and their
corresponding keys. Set in subclasses.

	
class geoalchemy2.types.Geography(geometry_type='GEOMETRY', srid=-1, dimension=2, spatial_index=True, management=False, use_typmod=None)

	Bases: geoalchemy2.types._GISType

The Geography type.

Creating a geography column is done like this:

Column(Geography(geometry_type='POINT', srid=4326))

See geoalchemy2.types._GISType for the list of arguments that can
be passed to the constructor.

	
as_binary = 'ST_AsBinary'

	The “as binary” function to use. Used by the parent class’
column_expression method.

	
from_text = 'ST_GeogFromText'

	The FromText geography constructor. Used by the parent class’
bind_expression method.

	
name = 'geography'

	Type name used for defining geography columns in CREATE TABLE.

	
class geoalchemy2.types.Geometry(geometry_type='GEOMETRY', srid=-1, dimension=2, spatial_index=True, management=False, use_typmod=None)

	Bases: geoalchemy2.types._GISType

The Geometry type.

Creating a geometry column is done like this:

Column(Geometry(geometry_type='POINT', srid=4326))

See geoalchemy2.types._GISType for the list of arguments that can
be passed to the constructor.

	
as_binary = 'ST_AsEWKB'

	The “as binary” function to use. Used by the parent class’
column_expression method.

	
from_text = 'ST_GeomFromEWKT'

	The “from text” geometry constructor. Used by the parent class’
bind_expression method.

	
name = 'geometry'

	Type name used for defining geometry columns in CREATE TABLE.

	
class geoalchemy2.types.GeometryDump

	Bases: geoalchemy2.types.CompositeType

The return type for functions like ST_Dump, consisting of a path and
a geom field. You should normally never use this class directly.

	
typemap = {'geom': <class 'geoalchemy2.types.Geometry'>, 'path': ARRAY(Integer())}

	Dictionary defining the contents of a geometry_dump.

	
class geoalchemy2.types.Raster(spatial_index=True)

	Bases: sqlalchemy.sql.type_api.UserDefinedType

The Raster column type.

Creating a raster column is done like this:

Column(Raster)

This class defines the result_processor method, so that raster values
received from the database are converted to
geoalchemy2.elements.RasterElement objects.

Constructor arguments:

spatial_index

Indicate if a spatial index should be created. Default is True.

	
comparator_factory

	This is the way by which spatial operators and functions are
defined for raster columns.

alias of BaseComparator

	
class geoalchemy2.types._GISType(geometry_type='GEOMETRY', srid=-1, dimension=2, spatial_index=True, management=False, use_typmod=None)

	Bases: sqlalchemy.sql.type_api.UserDefinedType

The base class for geoalchemy2.types.Geometry and
geoalchemy2.types.Geography.

This class defines bind_expression and column_expression methods
that wrap column expressions in ST_GeomFromEWKT, ST_GeogFromText,
or ST_AsEWKB calls.

This class also defines result_processor and bind_processor
methods. The function returned by result_processor converts WKB values
received from the database to geoalchemy2.elements.WKBElement
objects. The function returned by bind_processor converts
geoalchemy2.elements.WKTElement objects to EWKT strings.

Constructor arguments:

geometry_type

The geometry type.

Possible values are:

	"GEOMETRY",

	"POINT",

	"LINESTRING",

	"POLYGON",

	"MULTIPOINT",

	"MULTILINESTRING",

	"MULTIPOLYGON",

	"GEOMETRYCOLLECTION"

	"CURVE",

	None.

The latter is actually not supported with
geoalchemy2.types.Geography.

When set to None then no “geometry type” constraints will be
attached to the geometry type declaration. Using None here
is not compatible with setting management to True.

Default is "GEOMETRY".

srid

The SRID for this column. E.g. 4326. Default is -1.

dimension

The dimension of the geometry. Default is 2.

spatial_index

Indicate if a spatial index should be created. Default is True.

management

Indicate if the AddGeometryColumn and DropGeometryColumn
managements functions should be called when adding and dropping the
geometry column. Should be set to True for PostGIS 1.x. Default is
False. Note that this option has no effect for
geoalchemy2.types.Geography.

use_typmod

By default PostgreSQL type modifiers are used to create the geometry
column. To use check constraints instead set use_typmod to
False. By default this option is not included in the call to
AddGeometryColumn. Note that this option is only taken
into account if management is set to True and is only available
for PostGIS 2.x.

	
as_binary = None

	The name of the “as binary” function for this type.
Set in subclasses.

	
comparator_factory

	This is the way by which spatial operators are defined for
geometry/geography columns.

alias of Comparator

	
from_text = None

	The name of “from text” function for this type.
Set in subclasses.

	
name = None

	Name used for defining the main geo type (geometry or geography)
in CREATE TABLE statements. Set in subclasses.

Elements

	
class geoalchemy2.elements.WKTElement(*args, **kwargs)

	Bases: geoalchemy2.elements._SpatialElement, sqlalchemy.sql.functions.Function

Instances of this class wrap a WKT or EWKT value.

Usage examples:

wkt_element_1 = WKTElement('POINT(5 45)')
wkt_element_2 = WKTElement('POINT(5 45)', srid=4326)
wkt_element_3 = WKTElement('SRID=4326;POINT(5 45)', extended=True)

	
desc

	This element’s description string.

	
class geoalchemy2.elements.WKBElement(*args, **kwargs)

	Bases: geoalchemy2.elements._SpatialElement, sqlalchemy.sql.functions.Function

Instances of this class wrap a WKB or EWKB value.

Geometry values read from the database are converted to instances of this
type. In most cases you won’t need to create WKBElement instances
yourself.

Note: you can create WKBElement objects from Shapely geometries
using the geoalchemy2.shape.from_shape() function.

	
desc

	This element’s description string.

	
class geoalchemy2.elements.RasterElement(data)

	Bases: sqlalchemy.sql.functions.FunctionElement

Instances of this class wrap a raster value. Raster values read
from the database are converted to instances of this type. In
most cases you won’t need to create RasterElement instances
yourself.

	
desc

	This element’s description string.

Spatial Functions

This module defines the GenericFunction class, which is the base for
the implementation of spatial functions in GeoAlchemy. This module is also
where actual spatial functions are defined. Spatial functions supported by
GeoAlchemy are defined in this module. See GenericFunction to know how
to create new spatial functions.

Note

By convention the names of spatial functions are prefixed by ST_. This
is to be consistent with PostGIS’, which itself is based on the SQL-MM
standard.

Functions created by subclassing GenericFunction can be called
in several ways:

	By using the func object, which is the SQLAlchemy standard way of calling
a function. For example, without the ORM:

select([func.ST_Area(lake_table.c.geom)])

and with the ORM:

Session.query(func.ST_Area(Lake.geom))

	By applying the function to a geometry column. For example, without the
ORM:

select([lake_table.c.geom.ST_Area()])

and with the ORM:

Session.query(Lake.geom.ST_Area())

	By applying the function to a geoalchemy2.elements.WKBElement
object (geoalchemy2.elements.WKBElement is the type into
which GeoAlchemy converts geometry values read from the database), or
to a geoalchemy2.elements.WKTElement object. For example,
without the ORM:

conn.scalar(lake['geom'].ST_Area())

and with the ORM:

session.scalar(lake.geom.ST_Area())

Reference

	
class geoalchemy2.functions.GenericFunction(*args, **kwargs)

	The base class for GeoAlchemy functions.

This class inherits from sqlalchemy.sql.functions.GenericFunction, so
functions defined by subclassing this class can be given a fixed return
type. For example, functions like ST_Buffer and
ST_Envelope have their type attributes set to
geoalchemy2.types.Geometry.

This class allows constructs like Lake.geom.ST_Buffer(2). In that
case the Function instance is bound to an expression (Lake.geom
here), and that expression is passed to the function when the function
is actually called.

If you need to use a function that GeoAlchemy does not provide you will
certainly want to subclass this class. For example, if you need the
ST_TransScale spatial function, which isn’t (currently) natively
supported by GeoAlchemy, you will write this:

from geoalchemy2 import Geometry
from geoalchemy2.functions import GenericFunction

class ST_TransScale(GenericFunction):
 name = 'ST_TransScale'
 type = Geometry

	
class geoalchemy2.functions.ST_Area(*args, **kwargs)

	Returns the area of the surface if it is a polygon or multi-polygon. For geometry type area is in SRID units. For geography area is in square meters.

see http://postgis.net/docs/ST_Area.html

	
class geoalchemy2.functions.ST_AsBinary(*args, **kwargs)

	Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

see http://postgis.net/docs/ST_AsBinary.html

	
class geoalchemy2.functions.ST_AsEWKB(*args, **kwargs)

	Return the Well-Known Binary (WKB) representation of the geometry/geography with SRID meta data.

see http://postgis.net/docs/ST_AsEWKB.html

	
class geoalchemy2.functions.ST_AsEWKT(*args, **kwargs)

	Return the Well-Known Text (WKT) representation of the geometry/geography with SRID metadata.

see http://postgis.net/docs/ST_AsEWKT.html

	
class geoalchemy2.functions.ST_AsGML(*args, **kwargs)

	Return the geometry as a GML version 2 or 3 element.

see http://postgis.net/docs/ST_AsGML.html

	
class geoalchemy2.functions.ST_AsGeoJSON(*args, **kwargs)

	Return the geometry as a GeoJSON element.

see http://postgis.net/docs/ST_AsGeoJSON.html

	
class geoalchemy2.functions.ST_AsKML(*args, **kwargs)

	Return the geometry as a KML element. Several variants. Default version=2, default precision=15

see http://postgis.net/docs/ST_AsKML.html

	
class geoalchemy2.functions.ST_AsRaster(*args, **kwargs)

	Converts a PostGIS geometry to a PostGIS raster.

see http://postgis.net/docs/RT_ST_AsRaster.html

Return type: geoalchemy2.types.Raster.

	
type

	alias of Raster

	
class geoalchemy2.functions.ST_AsSVG(*args, **kwargs)

	Returns a Geometry in SVG path data given a geometry or geography object.

see http://postgis.net/docs/ST_AsSVG.html

	
class geoalchemy2.functions.ST_AsTWKB(*args, **kwargs)

	Returns the geometry as TWKB, aka “Tiny Well-Known Binary”

see http://postgis.net/docs/ST_AsTWKB.html

	
class geoalchemy2.functions.ST_AsText(*args, **kwargs)

	Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

see http://postgis.net/docs/ST_AsText.html

	
class geoalchemy2.functions.ST_Buffer(*args, **kwargs)

	For geometry: Returns a geometry that represents all points whose distance from this Geometry is less than or equal to distance. Calculations are in the Spatial Reference System of this Geometry.

For geography: Uses a planar transform wrapper. Introduced in 1.5 support for different end cap and mitre settings to control shape.

see http://postgis.net/docs/ST_Buffer.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Centroid(*args, **kwargs)

	Returns the geometric center of a geometry.

see http://postgis.net/docs/ST_Centroid.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Contains(*args, **kwargs)

	Returns True if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.

see http://postgis.net/docs/ST_Contains.html

	
class geoalchemy2.functions.ST_ContainsProperly(*args, **kwargs)

	Returns True if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself.

see http://postgis.net/docs/ST_ContainsProperly.html

	
class geoalchemy2.functions.ST_CoveredBy(*args, **kwargs)

	Returns True if no point in Geometry/Geography A is outside Geometry/Geography B

see http://postgis.net/docs/ST_CoveredBy.html

	
class geoalchemy2.functions.ST_Covers(*args, **kwargs)

	Returns True if no point in Geometry B is outside Geometry A

see http://postgis.net/docs/ST_Covers.html

	
class geoalchemy2.functions.ST_Crosses(*args, **kwargs)

	Returns True if the supplied geometries have some, but not all, interior points in common.

see http://postgis.net/docs/ST_Crosses.html

	
class geoalchemy2.functions.ST_DFullyWithin(*args, **kwargs)

	Returns True if all of the geometries are within the specified distance of one another

see http://postgis.net/docs/ST_DFullyWithin.html

	
class geoalchemy2.functions.ST_DWithin(*args, **kwargs)

	Returns True if the geometries are within the specified distance of one another. For geometry units are in those of spatial reference and for geography units are in meters and measurement is defaulted to use_spheroid=True (measure around spheroid), for faster check, use_spheroid=False to measure along sphere.

see http://postgis.net/docs/ST_DWithin.html

	
class geoalchemy2.functions.ST_Difference(*args, **kwargs)

	Returns a geometry that represents that part of geometry A that does not intersect with geometry B.

see http://postgis.net/docs/ST_Difference.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Disjoint(*args, **kwargs)

	Returns True if the Geometries do not “spatially intersect” - if they do not share any space together.

see http://postgis.net/docs/ST_Disjoint.html

	
class geoalchemy2.functions.ST_Distance(*args, **kwargs)

	For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial ref) between two geometries in projected units. For geography type defaults to return spheroidal minimum distance between two geographies in meters.

see http://postgis.net/docs/ST_Distance.html

	
class geoalchemy2.functions.ST_Distance_Sphere(*args, **kwargs)

	Returns minimum distance in meters between two lon/lat geometries. Uses a spherical earth and radius of 6370986 meters. Faster than ST_Distance_Spheroid, but less accurate. PostGIS versions prior to 1.5 only implemented for points.

see http://postgis.net/docs/ST_Distance_Sphere.html

	
class geoalchemy2.functions.ST_Dump(*args, **kwargs)

	Returns a set of geometry_dump (geom,path) rows, that make up a geometry g1.

see http://postgis.net/docs/ST_Dump.html

Return type: geoalchemy2.types.GeometryDump.

	
type

	alias of GeometryDump

	
class geoalchemy2.functions.ST_DumpPoints(*args, **kwargs)

	Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.

see http://postgis.net/docs/ST_DumpPoints.html

Return type: geoalchemy2.types.GeometryDump.

	
type

	alias of GeometryDump

	
class geoalchemy2.functions.ST_Envelope(*args, **kwargs)

	Returns a geometry representing the double precision (float8) boundingbox of the supplied geometry.

see http://postgis.net/docs/ST_Envelope.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Equals(*args, **kwargs)

	Returns True if the given geometries represent the same geometry. Directionality is ignored.

see http://postgis.net/docs/ST_Equals.html

	
class geoalchemy2.functions.ST_GeometryN(*args, **kwargs)

	Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE Otherwise, return None.

see http://postgis.net/docs/ST_GeometryN.html

	
class geoalchemy2.functions.ST_GeometryType(*args, **kwargs)

	Return the geometry type of the ST_Geometry value.

see http://postgis.net/docs/ST_GeometryType.html

	
class geoalchemy2.functions.ST_Height(*args, **kwargs)

	Returns the height of the raster in pixels.

see http://postgis.net/docs/RT_ST_Height.html

	
class geoalchemy2.functions.ST_Intersection(*args, **kwargs)

	Returns a geometry that represents the shared portion of geomA and geomB. The geography implementation does a transform to geometry to do the intersection and then transform back to WGS84.

see http://postgis.net/docs/ST_Intersection.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Intersects(*args, **kwargs)

	Returns True if the Geometries/Geography “spatially intersect in 2D” - (share any portion of space) and False if they don’t (they are Disjoint). For geography – tolerance is 0.00001 meters (so any points that close are considered to intersect)

see http://postgis.net/docs/ST_Intersects.html

	
class geoalchemy2.functions.ST_IsValid(*args, **kwargs)

	Returns True if the ST_Geometry is well formed.

see http://postgis.net/docs/ST_IsValid.html

	
class geoalchemy2.functions.ST_Length(*args, **kwargs)

	Returns the 2d length of the geometry if it is a linestring or multilinestring. geometry are in units of spatial reference and geography are in meters (default spheroid)

see http://postgis.net/docs/ST_Length.html

	
class geoalchemy2.functions.ST_LineLocatePoint(*args, **kwargs)

	Returns a float between 0 and 1 representing the location of the closest point on LineString to the given Point, as a fraction of total 2d line length.You can use the returned location to extract a Point (ST_LineInterpolatePoint) or a substring (ST_LineSubstring).This is useful for approximating numbers of addresses

see http://postgis.net/docs/ST_LineLocatePoint.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_LineMerge(*args, **kwargs)

	Returns a (set of) LineString(s) formed by sewing together the constituent line work of a MULTILINESTRING.

see http://postgis.net/docs/ST_LineMerge.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_LineSubstring(*args, **kwargs)

	Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are float8 values between 0 and 1. This only works with LINESTRINGs. To use with contiguous MULTILINESTRINGs use in conjunction with ST_LineMerge.If ‘start’ and ‘end’ have the same value this is equivalent to ST_LineInterpolatePoint.

see http://postgis.net/docs/ST_LineSubstring.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_NPoints(*args, **kwargs)

	Return the number of points (vertices) in a geometry.

see http://postgis.net/docs/ST_NPoints.html

	
class geoalchemy2.functions.ST_OrderingEquals(*args, **kwargs)

	Returns True if the given geometries represent the same geometry and points are in the same directional order.

see http://postgis.net/docs/ST_OrderingEquals.html

	
class geoalchemy2.functions.ST_Overlaps(*args, **kwargs)

	Returns True if the Geometries share space, are of the same dimension, but are not completely contained by each other.

see http://postgis.net/docs/ST_Overlaps.html

	
class geoalchemy2.functions.ST_Perimeter(*args, **kwargs)

	Return the length measurement of the boundary of an ST_Surface or ST_MultiSurface geometry or geography. (Polygon, Multipolygon). geometry measurement is in units of spatial reference and geography is in meters.

see http://postgis.net/docs/ST_Perimeter.html

	
class geoalchemy2.functions.ST_Project(*args, **kwargs)

	Returns a POINT projected from a start point using a distance in meters and bearing (azimuth) in radians.

see http://postgis.net/docs/ST_Project.html

Return type: geoalchemy2.types.Geography.

	
type

	alias of Geography

	
class geoalchemy2.functions.ST_Relate(*args, **kwargs)

	Returns True if this Geometry is spatially related to anotherGeometry, by testing for intersections between the Interior, Boundary and Exterior of the two geometries as specified by the values in the intersectionMatrixPattern. If no intersectionMatrixPattern is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries.

see http://postgis.net/docs/ST_Relate.html

	
class geoalchemy2.functions.ST_SRID(*args, **kwargs)

	Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.

see http://postgis.net/docs/ST_SRID.html

	
class geoalchemy2.functions.ST_Simplify(*args, **kwargs)

	Returns a “simplified” version of the given geometry using the Douglas-Peucker algorithm

see http://postgis.net/docs/ST_Simplify.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Touches(*args, **kwargs)

	Returns True if the geometries have at least one point in common, but their interiors do not intersect.

see http://postgis.net/docs/ST_Touches.html

	
class geoalchemy2.functions.ST_Transform(*args, **kwargs)

	Returns a new geometry with its coordinates transformed to the SRID referenced by the integer parameter.

see http://postgis.net/docs/ST_Transform.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Union(*args, **kwargs)

	Returns a geometry that represents the point set union of the Geometries.

see http://postgis.net/docs/ST_Union.html

Return type: geoalchemy2.types.Geometry.

	
type

	alias of Geometry

	
class geoalchemy2.functions.ST_Value(*args, **kwargs)

	Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

see http://postgis.net/docs/RT_ST_Value.html

	
class geoalchemy2.functions.ST_Width(*args, **kwargs)

	Returns the width of the raster in pixels.

see http://postgis.net/docs/RT_ST_Width.html

	
class geoalchemy2.functions.ST_Within(*args, **kwargs)

	Returns True if the geometry A is completely inside geometry B

see http://postgis.net/docs/ST_Within.html

	
class geoalchemy2.functions.ST_X(*args, **kwargs)

	Return the X coordinate of the point, or None if not available. Input must be a point.

see http://postgis.net/docs/ST_X.html

	
class geoalchemy2.functions.ST_Y(*args, **kwargs)

	Return the Y coordinate of the point, or None if not available. Input must be a point.

see http://postgis.net/docs/ST_Y.html

	
class geoalchemy2.functions.ST_Z(*args, **kwargs)

	Return the Z coordinate of the point, or None if not available. Input must be a point.

see http://postgis.net/docs/ST_Z.html

Spatial Operators

This module defines a Comparator class for use with geometry and geography
objects. This is where spatial operators, like &&, &<, are defined.
Spatial operators very often apply to the bounding boxes of geometries. For
example, geom1 && geom2 indicates if geom1’s bounding box intersects
geom2’s.

Examples

Select the objects whose bounding boxes are to the left of the
bounding box of POLYGON((-5 45,5 45,5 -45,-5 -45,-5 45)):

select([table]).where(table.c.geom.to_left(
 'POLYGON((-5 45,5 45,5 -45,-5 -45,-5 45))'))

The << and >> operators are a bit specific, because they have
corresponding Python operator (__lshift__ and __rshift__). The
above SELECT expression can thus be rewritten like this:

select([table]).where(
 table.c.geom << 'POLYGON((-5 45,5 45,5 -45,-5 -45,-5 45))')

Operators can also be used when using the ORM. For example:

Session.query(Cls).filter(
 Cls.geom << 'POLYGON((-5 45,5 45,5 -45,-5 -45,-5 45))')

Now some other examples with the <#> operator.

Select the ten objects that are the closest to POINT(0 0) (typical
closed neighbors problem):

select([table]).order_by(table.c.geom.distance_box('POINT(0 0)')).limit(10)

Using the ORM:

Session.query(Cls).order_by(Cls.geom.distance_box('POINT(0 0)')).limit(10)

Reference

	
class geoalchemy2.comparator.BaseComparator(expr)

	Bases: sqlalchemy.sql.type_api.Comparator

A custom comparator base class. It adds the ability to call spatial
functions on columns that use this kind of comparator. It also defines
functions that map to operators supported by Geometry, Geography
and Raster columns.

This comparator is used by the geoalchemy2.types.Raster.

	
__weakref__

	list of weak references to the object (if defined)

	
intersects(other)

	The && operator. A’s BBOX intersects B’s.

	
overlaps_or_to_left(other)

	The &< operator. A’s BBOX overlaps or is to the left of B’s.

	
overlaps_or_to_right(other)

	The &> operator. A’s BBOX overlaps or is to the right of B’s.

	
class geoalchemy2.comparator.Comparator(expr)

	Bases: geoalchemy2.comparator.BaseComparator

A custom comparator class. Used in geoalchemy2.types.Geometry
and geoalchemy2.types.Geography.

This is where spatial operators like << and <-> are defined.

	
__lshift__(other)

	The << operator. A’s BBOX is strictly to the left of B’s.
Same as to_left, so:

table.c.geom << 'POINT(1 2)'

is the same as:

table.c.geom.to_left('POINT(1 2)')

	
__rshift__(other)

	The >> operator. A’s BBOX is strictly to the left of B’s.
Same as to_`right`, so:

table.c.geom >> 'POINT(1 2)'

is the same as:

table.c.geom.to_right('POINT(1 2)')

	
above(other)

	The |>> operator. A’s BBOX is strictly above B’s.

	
below(other)

	The <<| operator. A’s BBOX is strictly below B’s.

	
contained(other)

	The @ operator. A’s BBOX is contained by B’s.

	
contains(other, **kw)

	The ~ operator. A’s BBOX contains B’s.

	
distance_box(other)

	The <#> operator. The distance between bounding box of two
geometries.

	
distance_centroid(other)

	The <-> operator. The distance between two points.

	
overlaps_or_above(other)

	The |&> operator. A’s BBOX overlaps or is above B’s.

	
overlaps_or_below(other)

	The &<| operator. A’s BBOX overlaps or is below B’s.

	
same(other)

	The ~= operator. A’s BBOX is the same as B’s.

	
to_left(other)

	The << operator. A’s BBOX is strictly to the left of B’s.

	
to_right(other)

	The >> operator. A’s BBOX is strictly to the right of B’s.

Shapely Integration

This module provides utility functions for integrating with Shapely.

Note

As GeoAlchemy 2 itself has no dependency on Shapely, applications using
functions of this module have to ensure that Shapely is available.

	
geoalchemy2.shape.from_shape(shape, srid=-1)

	Function to convert a Shapely geometry to a
geoalchemy2.types.WKBElement.

Additional arguments:

srid

An integer representing the spatial reference system. E.g. 4326.
Default value is -1, which means no/unknown reference system.

Example:

from shapely.geometry import Point
wkb_element = from_shape(Point(5, 45), srid=4326)

	
geoalchemy2.shape.to_shape(element)

	Function to convert a geoalchemy2.types.SpatialElement
to a Shapely geometry.

Example:

lake = Session.query(Lake).get(1)
polygon = to_shape(lake.geom)

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 geoalchemy2	

 	
 	
 geoalchemy2.comparator	

 	
 	
 geoalchemy2.functions	

 	
 	
 geoalchemy2.shape	

 	
 	
 geoalchemy2.types	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | N
 | O
 | R
 | S
 | T
 | W

_

 	
 	__lshift__() (geoalchemy2.comparator.Comparator method)

 	__rshift__() (geoalchemy2.comparator.Comparator method)

 	
 	__weakref__ (geoalchemy2.comparator.BaseComparator attribute)

 	_GISType (class in geoalchemy2.types)

A

 	
 	above() (geoalchemy2.comparator.Comparator method)

 	as_binary (geoalchemy2.types._GISType attribute)

 	(geoalchemy2.types.Geography attribute)

 	(geoalchemy2.types.Geometry attribute)

B

 	
 	BaseComparator (class in geoalchemy2.comparator)

 	
 	below() (geoalchemy2.comparator.Comparator method)

C

 	
 	Comparator (class in geoalchemy2.comparator)

 	comparator_factory (geoalchemy2.types._GISType attribute)

 	(geoalchemy2.types.Raster attribute)

 	
 	CompositeType (class in geoalchemy2.types)

 	contained() (geoalchemy2.comparator.Comparator method)

 	contains() (geoalchemy2.comparator.Comparator method)

D

 	
 	desc (geoalchemy2.elements.RasterElement attribute)

 	(geoalchemy2.elements.WKBElement attribute)

 	(geoalchemy2.elements.WKTElement attribute)

 	
 	distance_box() (geoalchemy2.comparator.Comparator method)

 	distance_centroid() (geoalchemy2.comparator.Comparator method)

F

 	
 	from_shape() (in module geoalchemy2.shape)

 	from_text (geoalchemy2.types._GISType attribute)

 	(geoalchemy2.types.Geography attribute)

 	(geoalchemy2.types.Geometry attribute)

G

 	
 	GenericFunction (class in geoalchemy2.functions)

 	geoalchemy2.comparator (module)

 	geoalchemy2.functions (module)

 	geoalchemy2.shape (module)

 	
 	geoalchemy2.types (module)

 	Geography (class in geoalchemy2.types)

 	Geometry (class in geoalchemy2.types)

 	GeometryDump (class in geoalchemy2.types)

I

 	
 	intersects() (geoalchemy2.comparator.BaseComparator method)

N

 	
 	name (geoalchemy2.types._GISType attribute)

 	(geoalchemy2.types.Geography attribute)

 	(geoalchemy2.types.Geometry attribute)

O

 	
 	overlaps_or_above() (geoalchemy2.comparator.Comparator method)

 	overlaps_or_below() (geoalchemy2.comparator.Comparator method)

 	
 	overlaps_or_to_left() (geoalchemy2.comparator.BaseComparator method)

 	overlaps_or_to_right() (geoalchemy2.comparator.BaseComparator method)

R

 	
 	Raster (class in geoalchemy2.types)

 	
 	RasterElement (class in geoalchemy2.elements)

S

 	
 	same() (geoalchemy2.comparator.Comparator method)

 	ST_Area (class in geoalchemy2.functions)

 	ST_AsBinary (class in geoalchemy2.functions)

 	ST_AsEWKB (class in geoalchemy2.functions)

 	ST_AsEWKT (class in geoalchemy2.functions)

 	ST_AsGeoJSON (class in geoalchemy2.functions)

 	ST_AsGML (class in geoalchemy2.functions)

 	ST_AsKML (class in geoalchemy2.functions)

 	ST_AsRaster (class in geoalchemy2.functions)

 	ST_AsSVG (class in geoalchemy2.functions)

 	ST_AsText (class in geoalchemy2.functions)

 	ST_AsTWKB (class in geoalchemy2.functions)

 	ST_Buffer (class in geoalchemy2.functions)

 	ST_Centroid (class in geoalchemy2.functions)

 	ST_Contains (class in geoalchemy2.functions)

 	ST_ContainsProperly (class in geoalchemy2.functions)

 	ST_CoveredBy (class in geoalchemy2.functions)

 	ST_Covers (class in geoalchemy2.functions)

 	ST_Crosses (class in geoalchemy2.functions)

 	ST_DFullyWithin (class in geoalchemy2.functions)

 	ST_Difference (class in geoalchemy2.functions)

 	ST_Disjoint (class in geoalchemy2.functions)

 	ST_Distance (class in geoalchemy2.functions)

 	ST_Distance_Sphere (class in geoalchemy2.functions)

 	ST_Dump (class in geoalchemy2.functions)

 	ST_DumpPoints (class in geoalchemy2.functions)

 	ST_DWithin (class in geoalchemy2.functions)

 	ST_Envelope (class in geoalchemy2.functions)

 	
 	ST_Equals (class in geoalchemy2.functions)

 	ST_GeometryN (class in geoalchemy2.functions)

 	ST_GeometryType (class in geoalchemy2.functions)

 	ST_Height (class in geoalchemy2.functions)

 	ST_Intersection (class in geoalchemy2.functions)

 	ST_Intersects (class in geoalchemy2.functions)

 	ST_IsValid (class in geoalchemy2.functions)

 	ST_Length (class in geoalchemy2.functions)

 	ST_LineLocatePoint (class in geoalchemy2.functions)

 	ST_LineMerge (class in geoalchemy2.functions)

 	ST_LineSubstring (class in geoalchemy2.functions)

 	ST_NPoints (class in geoalchemy2.functions)

 	ST_OrderingEquals (class in geoalchemy2.functions)

 	ST_Overlaps (class in geoalchemy2.functions)

 	ST_Perimeter (class in geoalchemy2.functions)

 	ST_Project (class in geoalchemy2.functions)

 	ST_Relate (class in geoalchemy2.functions)

 	ST_Simplify (class in geoalchemy2.functions)

 	ST_SRID (class in geoalchemy2.functions)

 	ST_Touches (class in geoalchemy2.functions)

 	ST_Transform (class in geoalchemy2.functions)

 	ST_Union (class in geoalchemy2.functions)

 	ST_Value (class in geoalchemy2.functions)

 	ST_Width (class in geoalchemy2.functions)

 	ST_Within (class in geoalchemy2.functions)

 	ST_X (class in geoalchemy2.functions)

 	ST_Y (class in geoalchemy2.functions)

 	ST_Z (class in geoalchemy2.functions)

T

 	
 	to_left() (geoalchemy2.comparator.Comparator method)

 	to_right() (geoalchemy2.comparator.Comparator method)

 	to_shape() (in module geoalchemy2.shape)

 	type (geoalchemy2.functions.ST_AsRaster attribute)

 	(geoalchemy2.functions.ST_Buffer attribute)

 	(geoalchemy2.functions.ST_Centroid attribute)

 	(geoalchemy2.functions.ST_Difference attribute)

 	(geoalchemy2.functions.ST_Dump attribute)

 	(geoalchemy2.functions.ST_DumpPoints attribute)

 	(geoalchemy2.functions.ST_Envelope attribute)

 	(geoalchemy2.functions.ST_Intersection attribute)

 	(geoalchemy2.functions.ST_LineLocatePoint attribute)

 	(geoalchemy2.functions.ST_LineMerge attribute)

 	(geoalchemy2.functions.ST_LineSubstring attribute)

 	(geoalchemy2.functions.ST_Project attribute)

 	(geoalchemy2.functions.ST_Simplify attribute)

 	(geoalchemy2.functions.ST_Transform attribute)

 	(geoalchemy2.functions.ST_Union attribute)

 	
 	typemap (geoalchemy2.types.CompositeType attribute)

 	(geoalchemy2.types.GeometryDump attribute)

W

 	
 	WKBElement (class in geoalchemy2.elements)

 	
 	WKTElement (class in geoalchemy2.elements)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/geoalchemy.png
GES

nav.xhtml

 Table of Contents

 		
 GeoAlchemy 2 Documentation

 		
 ORM Tutorial

 		
 Connect to the DB

 		
 Declare a Mapping

 		
 Create the Table in the Database

 		
 Create an Instance of the Mapped Class

 		
 Create a Session

 		
 Add New Objects

 		
 Query

 		
 Spatial Query

 		
 Spatial relationship

 		
 Processing and Measurement

 		
 Further Reference

 		
 Core Tutorial

 		
 Connect to the DB

 		
 Define a Table

 		
 Create the Table

 		
 Insertions

 		
 Selections

 		
 Spatial Query

 		
 Spatial relationship

 		
 Processing and Measurement

 		
 Further Reference

 		
 Types

 		
 Reference

 		
 Elements

 		
 Spatial Functions

 		
 Reference

 		
 Spatial Operators

 		
 Examples

 		
 Reference

 		
 Shapely Integration

_static/minus.png

_static/geoalchemy_small.png

_static/up-pressed.png

_static/up.png

_static/plus.png

