GES Alchemy

GeoAlchemy2 Documentation
Release 0.8.1

Eric Lemoine

May 15, 2020

Contents

Requirements

Installation

What’s New in GeoAlchemy 2
3.1 Migrate to GeoAlchemy 2

41 ORMTutorial
42 CoreTutorial
4.3 SpatiaLite Tutorial

5.1 Gallery

6.1 Types
6.2 Elements
6.3 Spatial Functions
6.4 Spatial Operatorso
6.5 Shapely Integration.

Tutorials

Gallery

Reference Documentation
Development

Indices and tables

25

........................ 25

31

........................ 31
........................ 31
........................ 31
........................ 31
........................ 31

33

35

GeoAlchemy2 Documentation, Release 0.8.1

Using SQLAlchemy with Spatial Databases.
GeoAlchemy 2 provides extensions to SQLAIchemy for working with spatial databases.
GeoAlchemy 2 focuses on PostGIS. PostGIS 1.5 and PostGIS 2 are supported.

SpatiaLite is also supported, but using GeoAlchemy 2 with Spatialite requires some specific configuration on the
application side. GeoAlchemy 2 works with SpatiaLite 4.3.0 and higher.

GeoAlchemy 2 aims to be simpler than its predecessor, GeoAlchemy. Simpler to use, and simpler to maintain.

Contents

http://sqlalchemy.org
http://postgis.net/
https://pypi.python.org/pypi/GeoAlchemy

GeoAlchemy2 Documentation, Release 0.8.1

2 Contents

CHAPTER 1

Requirements

GeoAlchemy 2 requires SQLAIchemy 0.8. GeoAlchemy 2 does not work with SQLAlchemy 0.7 and lower.

GeoAlchemy2 Documentation, Release 0.8.1

4 Chapter 1. Requirements

CHAPTER 2

Installation

GeoAlchemy 2 is available on the Python Package Index. So it can be installed with the standard pip or easy_install
tools.

https://pypi.python.org/pypi/GeoAlchemy2/
http://www.pip-installer.org
http://peak.telecommunity.com/DevCenter/EasyInstall

GeoAlchemy2 Documentation, Release 0.8.1

6 Chapter 2. Installation

CHAPTER 3

What's New in GeoAlchemy 2

* GeoAlchemy 2 supports PostGIS’ geomet ry type, as well as the geography and raster types.

¢ The first series had its own namespace for spatial functions. With GeoAlchemy 2, spatial functions are called like
any other SQLAIchemy function, using func, which is SQLAlchemy’s standard way of calling SQL functions.

* GeoAlchemy 2 works with SQLAlchemy’s ORM, as well as with SQLAlchemy’s SQL Expression Language
(a.k.a the SQLAIchemy Core). (This is thanks to SQLAlchemy’s new type-level comparator system.)

* GeoAlchemy 2 supports reflection of geometry and geography columns.

* GeoAlchemy 2 adds to_shape, from_shape functions for a better integration with Shapely.

3.1 Migrate to GeoAlchemy 2

This section describes how to migrate an application from the first series of GeoAlchemy to GeoAlchemy 2.

3.1.1 Defining Geometry Columns

The first series has specific types like Point, LineString and Polygon. These are gone, the gecalchemy?2.
types.Geometry type should be used instead, and a geometry_type can be passed to it.

So, for example, a polygon column that used to be defined like this:

’geom = Column (Polygon)

is now defined like this:

’geom = Column (Geometry ('POLYGON"))

This change is related to GeoAlchemy 2 supporting the geoalchemy?2.types.Geography type.

http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func
http://docs.sqlalchemy.org/en/latest/core/types.html?highlight=comparator_factory#types-operators
http://docs.sqlalchemy.org/en/latest/core/schema.html#metadata-reflection
http://pypi.python.org/pypi/Shapely

GeoAlchemy2 Documentation, Release 0.8.1

3.1.2 Calling Spatial Functions

The first series has its own namespace/object for calling spatial functions, namely gecalchemy. functions. With
GeoAlchemy 2, SQLAlchemy’s func object should be used.

For example, the expression

’functions.buffer(functions.centroid(box), 10, 2)

would be rewritten to this with GeoAlchemy 2:

’func.ST_Buffer(func.ST_Centroid(box), 10, 2)

Also, as the previous example hinted it, the names of spatial functions are now all prefixed with ST_. (This is to be con-
sistent with PostGIS and the SQL—MM standard.) The ST__ prefix should be used even when applying spatial functions
to columns, gecalchemy?2.elements.WKTElement, or geoalchemy2.elements.WKTElement objects:

Lake.geom.ST_Buffer (10, 2)
lake_table.c.geom.ST_Buffer (10, 2)
lake.geom.ST_Buffer (10, 2)

3.1.3 WKB and WKT Elements

The first series has classes like PersistentSpatialElement, PGPersistentSpatialElement,
WKTSpatialElement.

They’re all gone, and replaced by two classes only: geoalchemy2.elements.WKTElement and
geoalchemy?2.elements.WKBElement.

geoalchemy?2.elements.WKTElement is to be used in expressions where a geometry with a specific SRID
should be specified. For example:

’Lake.geom.ST_Touches(WKTElement(’POINT(l 1)', srid=4326))

If no SRID need be specified, a string can used directly:

’Lake.geom.ST_Touches('POINT(l ")

* geoalchemy2.elements.WKTElement literally replaces the first series’ WKTSpatialElement.

* geoalchemy2.elements.WKBElement is the type into which GeoAlchemy 2 converts geometry values
read from the database.

For example, the geom attributes of Lake objects loaded from the database would be refer-
ences to geoalchemy2.elements.WKBElement objects. This class replaces the first series’
PersistentSpatialElement classes.

See the Migrate to GeoAlchemy 2 page for details on how to migrate a GeoAlchemy application to GeoAlchemy 2.

8 Chapter 3. What’s New in GeoAlchemy 2

CHAPTER 4

Tutorials

GeoAlchemy 2 works with both SQLAlchemy’s Object Relational Mapping (ORM) and SQL Expression Language.
This documentation provides a tutorial for each system. If you’re new to GeoAlchemy 2 start with this.

4.1 ORM Tutorial

(This tutorial is greatly inspired by the SQLAlchemy ORM Tutorial, which is recommended reading, eventually.)

GeoAlchemy does not provide an Object Relational Mapper (ORM), but works well with the SQLAlchemy ORM.
This tutorial shows how to use the SQLAIchemy ORM with spatial tables, using GeoAlchemy.

4.1.1 Connect to the DB

For this tutorial we will use a PostGIS 2 database. To connect we use SQLAlchemy’s create_engine () function:

>>> from sglalchemy import create_engine
>>> engine = create_engine ('postgresgl://gis:gis@localhost/gis', echo=True)

In this example the name of the database, the database user, and the database password, is gis.

The echo flag is a shortcut to setting up SQLAIchemy logging, which is accomplished via Python’s standard logging
module. With it is enabled, we’ll see all the generated SQL produced.

The return value of create_engine is an Engine object, which represents the core interface to the database.

4.1.2 Declare a Mapping

When using the ORM, the configurational process starts by describing the database tables we’ll be dealing with, and
then by defining our own classes which will be mapped to those tables. In modern SQLAlchemy, these two tasks are
usually performed together, using a system known as Declarative, which allows us to create classes that include
directives to describe the actual database table they will be mapped to.

http://docs.sqlalchemy.org/en/latest/orm/tutorial.html

GeoAlchemy2 Documentation, Release 0.8.1

>>> from sglalchemy.ext.declarative import declarative_base
>>> from sqglalchemy import Column, Integer, String
>>> from geoalchemy2 import Geometry
>>>
>>> Base = declarative_base ()
>>>
>>> class Lake (Base) :
_ _tablename_ = 'lake'
id = Column (Integer, primary_key=True)
name = Column (String)
geom = Column (Geometry ('POLYGON'"))

The Lake class establishes details about the table being mapped, including the name of the table denoted by
__tablename__, and three columns id, name, and geom. The id column will be the primary key of the ta-
ble. The geom column is a geocalchemy?2.types.Geometry column whose geometry_type is POLYGON.

4.1.3 Create the Table in the Database

The Lake class has a corresponding Table object representing the database table. This Table object was created
automatically by SQLAlchemy, it is referenced to by the Lake.__table__ property:

>>> Lake._ table_

Table ('lake', MetaData (bind=None), Column('id', Integer(), table=<lake>,
primary_key=True, nullable=False), Column('name', String(), table=<lake>),
Column ('geom', Polygon(srid=4326), table=<lake>), schema=None)

To create the 1ake table in the database:

’>>> Lake.__table__ .create(engine)

If we wanted to drop the table we’d use:

>>> Lake.__table__ .drop(engine)

4.1.4 Create an Instance of the Mapped Class

With the mapping declared, we can create a Lake object:

>>> lake = Lake (name='Majeur', geom='POLYGON((O 0,1 0,1 1,0 1,0 0))")
>>> lake.geom

'POLYGON((O 0,1 0,1 1,0 1,0 0))"

>>> str(lake.id)

'None'

A WKT is passed to the Lake constructor for its geometry. This WKT represents the shape of our lake. Since we
have not yet told SQLAlchemy to persist the 1ake object, its 1d is None.

The EWKT (Extended WKT) format is also supported. So, for example, if the spatial reference system for the ge-
ometry column were 4326, the string SRID=4326; POLYGON((0O 0,1 0,1,0 1,0 0)) could be used as the
geometry representation.

4.1.5 Create a Session

The ORM interacts with the database through a Session. Let’s create a Session class:

10 Chapter 4. Tutorials

GeoAlchemy2 Documentation, Release 0.8.1

>>> from sqglalchemy.orm import sessionmaker
>>> Session = sessionmaker (bind=engine)

This custom-made Session class will create new Session objects which are bound to our database. Then, when-
ever we need to have a conversation with the database, we instantiate a Session:

>>> session = Session ()

The above Session is associated with our PostgreSQL Engine, but it hasn’t opened any connection yet.

4.1.6 Add New Objects

To persist our Lake object, we add () it to the Session:

’>>> session.add (lake)

At this point the 1ake object has been added to the Session, but no SQL has been issued to the database. The
object is in a pending state. To persist the object a flush or commit operation must occur (commit implies flush):

’>>> session.commit ()

We can now query the database for Ma jeur:

>>> our_lake = session.query (Lake).filter_ by (name='Majeur') .first ()

>>> our_lake.name

u'Majeur'

>>> our_lake.geom

<WKBElement at 0x9%9af594c;
—'0103000000010000000500£03£0000000000
o>

>>> our_lake.id

1

our_lake.geom is a geoalchemy2.elements.WKBElement, which a type provided by GeoAlchemy.
geoalchemy2.elements.WKBElement wraps a WKB value returned by the database.

Let’s add more lakes:

>>> session.add_all ([
Lake (name='Garde', geom='POLYGON((1 0,3 0,3 2,1 2,1 0))"),
Lake (name='Orta', geom='POLYGON((3 0,6 0,6 3,3 3,3 0))")
1)

>>> gession.commit ()

4.1.7 Query

A Query object is created using the query () function on Session. For example here’s a Query that loads Lake
instances ordered by their names:

>>> query = session.query (Lake) .order_by (Lake.name)

Any Query is iterable:

4.1. ORM Tutorial 11

000000000000

GeoAlchemy2 Documentation, Release 0.8.1

>>> for lake in query:
print lake.name

Garde

Majeur

Orta

Another way to execute the query and get a list of Lake objects involves calling a1l () on the Query:

>>> lakes = session.query (Lake) .order_by (Lake.name) .all()

The SQLAlchemy ORM Tutorial’s Querying section provides more examples of queries.

4.1.8 Make Spatial Queries

Using spatial filters in SQL SELECT queries is very common. Such queries are performed by using spatial relationship
functions, or operators, in the WHERE clause of the SQL query.

For example, to find the Lake s that contain the point POINT (4 1), we can use this Query:

>>> from sqglalchemy import func
>>> query = session.query(Lake).filter(
func.ST_Contains (Lake.geom, 'POINT (4 1)'"))

>>> for lake in query:
print lake.name

Orta

GeoAlchemy allows rewriting this Query more concisely:

>>> query = session.query(Lake).filter (Lake.geom.ST_Contains ('POINT (4 1)"))
>>> for lake in query:
print lake.name

Orta

Here the ST_Contains function is applied to the Lake . geom column property. In that case the column property
is actually passed to the function, as its first argument.

Here’s another spatial filtering query, based on ST_Intersects:

>>> query = session.query(Lake).filter(
Lake.geom.ST_Intersects ('LINESTRING(2 1,4 1)"))

>>> for lake in query:
print lake.name

Garde

Orta

We can also apply relationship functions to gecalchemy?2.elements.WKBElement. For example:

>>> lake = session.query(Lake).filter_by (name='Garde') .one ()
>>> print session.scalar (lake.geom.ST_Intersects ('LINESTRING(2 1,4 1)"))
True

12 Chapter 4. Tutorials

http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#querying

GeoAlchemy2 Documentation, Release 0.8.1

session.scalar allows executing a clause and returning a scalar value (a boolean value in this case).

The GeoAlchemy functions all start with ST_. Operators are also called as functions, but the function names don’t
include the ST__ prefix. As an example let’s use PostGIS’ && operator, which allows testing whether the bounding
boxes of geometries intersect. GeoAlchemy provides the intersects function for that:

>>> query = session.query
>>> query = session.query (Lake).filter(
Lake.geom.intersects ('LINESTRING(2 1,4 1)"'))

>>> for lake in query:
print lake.name

Garde

Orta

4.1.9 Set Spatial Relationships in the Model

Let’s assume that in addition to 1ake we have another table, t reasure, that includes treasure locations. And let’s
say that we are interested in discovering the treasures hidden at the bottom of lakes.

The Treasure class is the following:

>>> class Treasure (Base) :
__tablename__ = 'treasure'
id = Column (Integer, primary_key=True)
geom = Column (Geometry ('POINT'"))

We can now add a relationship to the Lake table to automatically load the treasures contained by each lake:

>>> from sglalchemy.orm import relationship, backref
>>> class Lake (Base) :
_ _tablename__ = 'lake'
id = Column (Integer, primary_key=True)
name = Column (String)
geom = Column (Geometry ('POLYGON'"))
treasures = relationship(
'Treasure’',
primaryjoin='func.ST_Contains (foreign (Lake.geom), Treasure.geom) .as_
—comparison(l, 2)',
backref=backref ('lake', uselist=False),
viewonly=True,
uselist=True,

Note the use of the as_comparison function. It is required for using an SQL function (ST_Contains here) in a
primaryjoin condition. This only works with SQLAlchemy 1.3, as the as_comparison function did not exist
before that version. See the Custom operators based on SQL function section of the SQLAlchemy documentation for
more information.

Some information on the parameters used for configuring this relationship:

* backref is used to provide the name of property to be placed on the class that handles this relationship in the
other direction, namely Treasure;

* viewonly=True specifies that the relationship is used only for loading objects, and not for persistence oper-
ations;

4.1. ORM Tutorial 13

https://docs.sqlalchemy.org/en/latest/orm/join_conditions.html#custom-operators-based-on-sql-functions

GeoAlchemy2 Documentation, Release 0.8.1

* uselist=True indicates that the property should be loaded as a list, as opposed to a scalar.

Also, note that the t reasures property on 1ake objects (and the 1ake property on t reasure objects) is loaded
“lazily” when the property is first accessed. Another loading strategy may be configured in the relationship. For
example you'duse lazy="joined" for related items to be loaded “eagerly” in the same query as that of the parent,
using a JOIN or LEFT OUTER JOIN.

See the Relationships API section of the SQLAlchemy documentation for more detail on the relationship func-
tion, and all the parameters that can be used to configure it.

4.1.10 Use Other Spatial Functions

Here’s a Query that calculates the areas of buffers for our lakes:

>>> from sglalchemy import func

>>> query = session.query (Lake.name,

func.ST_Area (func.ST_Buffer (Lake.geom, 2)) \
Ce. .label ('bufferarea'))

>>> for row in query:

1 L)

print : % (row.name, row.bufferarea)

Majeur: 21.485781
Garde: 32.485781
Orta: 45.485781

This Query applies the PostGIS ST_Buf fer function to the geometry column of every row of the 1ake table. The
return value is a list of rows, where each row is actually a tuple of two values: the lake name, and the area of a buffer
of the lake. Each tuple is actually an SQLAlchemy KeyedTuple object, which provides property type accessors.

Again, the Query can written more concisely:

>>> query = session.query (Lake.name,

Ce Lake.geom.ST_Buffer (2) .ST_Area () .label ('bufferarea'))

>>> for row in query:
print ' : ' % (row.name, row.bufferarea)

Majeur: 21.485781
Garde: 32.485781
Orta: 45.485781

Obviously, processing and measurement functions can also be used in WHERE clauses. For example:

>>> lake = session.query(Lake).filter(
Lake.geom.ST_Buffer (2) .ST_Area() > 33).one()

>>> print lake.name
Orta

And, like any other functions supported by GeoAlchemy, processing and measurement functions can be applied to
geoalchemy?2.elements.WKBElement. For example:

>>> lake = session.query(Lake).filter_ by (name='Majeur') .one ()
>>> pbufferarea = session.scalar (lake.geom.ST_Buffer (2).ST_Area())
>>> print ' : ' % (lake.name, bufferarea)

Majeur: 21.485781

14 Chapter 4. Tutorials

https://docs.sqlalchemy.org/en/latest/orm/relationship_api.html#relationships-api

GeoAlchemy2 Documentation, Release 0.8.1

4.1.11 Further Reference

* Spatial Functions Reference: Spatial Functions
* Spatial Operators Reference: Spatial Operators

¢ Elements Reference: Elements

4.2 Core Tutorial

(This tutorial is greatly inspired from the SQLAlchemy SQL Expression Language Tutorial, which is recommended
reading, eventually.)

This tutorial shows how to use the SQLAlchemy Expression Language (a.k.a. SQLAlchemy Core) with GeoAlchemy.
As defined by the SQLAlchemy documentation itself, in contrast to the ORM’s domain-centric mode of usage, the
SQL Expression Language provides a schema-centric usage paradigm.

4.2.1 Connect to the DB

For this tutorial we will use a PostGIS 2 database. To connect we use SQLAlchemy’s create_engine () function:

>>> from sglalchemy import create_engine
>>> engine = create_engine('postgresqgl://gis:gis@localhost/gis', echo=True)

In this example the name of the database, the database user, and the database password, is gis.

The echo flag is a shortcut to setting up SQLAlchemy logging, which is accomplished via Python’s standard logging
module. With it is enabled, we’ll see all the generated SQL produced.

The return value of create_engine is an Engine object, which respresents the core interface to the database.

4.2.2 Define a Table

The very first object that we need to create is a Table. Here we create a 1ake_table object, which will correspond
to the 1ake table in the database:

>>> from sglalchemy import Table, Column, Integer, String, MetaData
>>> from geoalchemy2 import Geometry
>>>
>>> metadata = MetaData()
>>> lake_table = Table('lake', metadata,
Column('id', Integer, primary_key=True),
Column ('name', String),
Column ('geom', Geometry ('POLYGON'"))

This table is composed of three columns, id, name and geom. The geom column is a geocalchemy?2.types.
Geomet ry column whose geometry_type is POLYGON.

Any Table object is added to a MetaData object, which is a catalog of Table objects (and other related objects).

4.2. Core Tutorial 15

http://docs.sqlalchemy.org/en/latest/core/tutorial.html

GeoAlchemy2 Documentation, Release 0.8.1

4.2.3 Create the Table

With our Table being defined we’re ready (to have SQLAlchemy) create it in the database:

’>>> lake_table.create (engine)

Calling create_all () on metadata would have worked equally well:

’>>> metadata.create_all (engine)

In that case every Table that’s referenced to by met adata would be created in the database. The metadata object
includes one Table here, our now well-known 1lake_table object.

4.2.4 Reflecting tables

The reflection system of SQLAlchemy can be used on tables containing geocalchemy?2.types.Geometry or
geoalchemy?2.types.Geography columns. In this case, the type must be imported to be registered into
SQLAIchemy, even if it is not used explicitely.

>>> from geoalchemy2 import Geometry # <= not used but must be imported

>>> from sglalchemy import create_engine, MetaData

>>> engine = create_engine ("postgresql://myuser:mypass@mydb.host.tld/mydbname")
>>> meta = MetaData ()

>>> meta.reflect (bind=engine)

4.2.5 Insertions

We want to insert records into the 1ake table. For that we need to create an Insert object. SQLAlchemy provides
multiple constructs for creating an Insert object, here’s one:

>>> ins = lake_table.insert ()
>>> str(ins)
INSERT INTO lake (id, name, geom) VALUES (:id, :name, ST_GeomFromEWKT (:geom))

The geom column being a Geomet ry column, the : geom bind value is wrapped in a ST_GeomFromEWKT call.

To limit the columns named in the INSERT query the values () method can be used:

>>> ins = lake_table.insert () .values (name="'Majeur',

geom="POLYGON((O 0,1 0,1 1,0 1,0 0))")
>>> str(ins)
INSERT INTO lake (name, geom) VALUES (:name, ST_GeomFromEWKT (:geom))

Tip: The string representation of the SQL expression does not include the data placed in values. We got named
bind parameters instead. To view the data we can get a compiled form of the expression, and ask for its params:

>>> ins.compile.params ()
{'geom': 'POLYGON((O 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}

Up to now we’ve created an INSERT query but we haven’t sent this query to the database yet. Before being able to
send it to the database we need a database Connection. We can get a Connection from the Engine object we
created earlier:

16 Chapter 4. Tutorials

http://docs.sqlalchemy.org/en/latest/core/schema.html#metadata-reflection

GeoAlchemy2 Documentation, Release 0.8.1

’>>> conn = engine.connect () ‘

We’re now ready to execute our INSERT statement:

’>>> result = conn.execute (ins) ‘

This is what the logging system should output:

INSERT INTO lake (name, geom) VALUES (% (name)s, ST_GeomFromEWKT (% (geom)s)) RETURNING
—lake.id

{'geom': 'POLYGON((O 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}

COMMIT

The value returned by conn.execute (), stored in result, is a sglalchemy.engine.ResultProxy ob-
ject. In the case of an INSERT we can get the primary key value which was generated from our statement:

>>> result.inserted_primary_key
[1]

Instead of using values () to specify our INSERT data, we can send the data to the execute () method on
Connection. So we could rewrite things as follows:

>>> conn.execute (lake_table.insert (),
name='Majeur', geom='POLYGON((O 0,1 0,1 1,0 1,0 0))")

Now let’s use another form, allowing to insert multiple rows at once:

>>> conn.execute (lake_table.insert (), [
{'name': 'Garde', 'geom': 'POLYGON((1 0,3 0,3 2,1 2,1 0))"'},
{'name': 'Orta', 'geom': 'POLYGON((3 0,6 0,6 3,3 3,3 0))"'}
1)

Tip: In the above examples the geometries are specified as WKT strings. Specifying them as EWKT strings is also
supported.

4.2.6 Selections

Inserting involved creating an Insert object, so it’d come to no surprise that Selecting involves creating a Select
object. The primary construct to generate SELECT statements is SQLAlchemy‘s select () function:

>>> from sqglalchemy.sgl import select

>>> g = select ([lake_table])

>>> str(s)

SELECT lake.id, lake.name, ST_AsSEWKB (lake.geom) AS geom FROM lake

The geom column being a Geomet ry it is wrapped in a ST_AsEWKB call when specified as a column in a SELECT
statement.

We can now execute the statement and look at the results:

>>> result = conn.execute(s)
>>> for row in result:

(continues on next page)

4.2. Core Tutorial 17

GeoAlchemy2 Documentation, Release 0.8.1

(continued from previous page)

print 'name:', row['name'], ; geom:', row['geom'].desc

name: Majeur ; geom: 0103...
name: Garde ; geom: 0103...
name: Orta ; geom: 0103...

row['geom'] is a geocalchemy?2.types.WKBElement instance. In this example we just get an hexadecimal
representation of the geometry’s WKB value using the de sc property.

4.2.7 Spatial Query

As spatial database users executing spatial queries is of a great interest to us. There comes GeoAlchemy!

Spatial relationship

Using spatial filters in SQL SELECT queries is very common. Such queries are performed by using spatial relationship
functions, or operators, in the WHERE clause of the SQL query.

For example, to find lakes that contain the point POINT (4 1), we can use this:

>>> from sqglalchemy import func
>>> s = select([lake_table],
func.ST_Contains (lake_table.c.geom, 'POINT (4 1)'))

>>> str(s)
SELECT lake.id, lake.name, ST_ASEWKB (lake.geom) AS geom FROM lake WHERE ST_
—~Contains (lake.geom, :param_ 1)
>>> result = conn.execute(s)
>>> for row in result:

print 'name:', row['name'], '; geom:', row['geom'].desc

name: Orta ; geom: 0103...

GeoAlchemy allows rewriting this more concisely:

>>> 5 = select ([lake_table], lake_table.c.geom.ST_Contains ('POINT (4 1)"))
>>> str(s)

SELECT lake.id, lake.name, ST_ASEWKB (lake.geom) AS geom FROM lake WHERE ST_
—Contains (lake.geom, :param_ 1)

Here the ST_Contains function is applied to Lake . c.geom. And the generated SQL the 1ake . geom column is
actually passed to the ST_Contains function as the first argument.

Here’s another spatial query, based on ST_Intersects:

>>> s = gselect ([lake_table],
Ce lake_table.c.geom.ST_Intersects ('LINESTRING(2 1,4 1)"))
>>> result = conn.execute(s)
>>> for row in result:
print 'name:', row['name'], '; geom:', row['geom'].desc

name: Garde ; geom: 0103...
name: Orta ; geom: 0103...

This query selects lakes whose geometries intersect °~ LINESTRING(2 1,4 1) °

18 Chapter 4. Tutorials

GeoAlchemy2 Documentation, Release 0.8.1

The GeoAlchemy functions all start with ST_. Operators are also called as functions, but the names of operator
functions don’t include the ST__ prefix.

As an example let’s use PostGIS’ & & operator, which allows testing whether the bounding boxes of geometries inter-
sect. GeoAlchemy provides the intersects function for that:

>>> s = select([lake_table],
C lake_table.c.geom.intersects ('LINESTRING(2 1,4 1)"))
>>> result = conn.execute(s)
>>> for row in result:
print 'name:', row['name'], '; geom:', row['geom'].desc

name: Garde ; geom: 0103...
name: Orta ; geom: 0103...

Processing and Measurement

Here’s a Select that calculates the areas of buffers for our lakes:

>>> g = gelect([lake_table.c.name,
func.ST_Area (
lake_table.c.geom.ST_Buffer(2)).label ('bufferarea')])
>>> str(s)
SELECT lake.name, ST_Area(ST_Buffer (lake.geom, % (param_1)s)) AS bufferarea FROM lake

>>> result = conn.execute(s)
>>> for row in result:
print ' : "% (row['name'], row['bufferarea'l)

Majeur: 21.485781
Garde: 32.485781
Orta: 45.485781

Obviously, processing and measurement functions can also be used in WHERE clauses. For example:

>>> s = select([lake_table.c.name],
lake_table.c.geom.ST_Buffer (2) .ST_Area() > 33)

>>> str(s)
SELECT lake.name FROM lake WHERE ST_Area (ST_Buffer (lake.geom, :param_1)) > :ST_Area_l
>>> result = conn.execute(s)
>>> for row in result:

print row['name']
Orta

And, like any other functions supported by GeoAlchemy, processing and measurement functions can be applied to
geoalchemy2.elements.WKBElement. For example:

>>> g = select ([lake_table], lake_table.c.name == 'Majeur')

>>> result = conn.execute(s)

>>> lake = result.fetchone ()

>>> bufferarea = conn.scalar (lake[lake_table.c.geom].ST_Buffer(2).ST_Areal())
>>> print ' : ' % (lake['name'], bufferarea)

Majeur: 21.485781

4.2.8 Further Reference

* Spatial Functions Reference: Spatial Functions

4.2. Core Tutorial 19

GeoAlchemy2 Documentation, Release 0.8.1

* Spatial Operators Reference: Spatial Operators

¢ Elements Reference: Elements

4.3 SpatiaLite Tutorial

GeoAlchemy 2’s main target is PostGIS. But GeoAlchemy 2 also supports Spatialite, the spatial extension to SQLite.
This tutorial describes how to use GeoAlchemy 2 with SpatiaLite. It’s based on the ORM Tutorial, which you may
want to read first.

4.3.1 Connect to the DB

Just like when using PostGIS connecting to a SpatiaLite database requires an Engine. This is how you create one for
SpatiaLite:

>>> from sglalchemy import create_engine

>>> from sglalchemy.event import listen

>>>

>>> def load_spatialite (dbapi_conn, connection_record):
dbapi_conn.enable_load_extension (True)
dbapi_conn.load_extension ('/usr/lib/x86_64-1linux-gnu/mod_spatialite.so'")

>>>

>>> engine = create_engine('sglite:///gis.db', echo=True)

>>> listen(engine, 'connect', load_spatialite)

The call to create_engine creates an engine bound to the database file gis.db. After that a connect listener
is registered on the engine. The listener is responsible for loading the Spatialite extension, which is a necessary
operation for using SpatiaLite through SQL.

At this point you can test that you are able to connect to the database:

>> conn = engine.connect ()

2018-05-30 17:12:02,675 INFO sqglalchemy.engine.base.Engine SELECT CAST('test plain,
—returns' AS VARCHAR(60)) AS anon_1

2018-05-30 17:12:02,676 INFO sqglalchemy.engine.base.Engine ()

2018-05-30 17:12:02,676 INFO sqglalchemy.engine.base.Engine SELECT CAST('test unicode_
—returns' AS VARCHAR (60)) AS anon_1

2018-05-30 17:12:02,676 INFO sqglalchemy.engine.base.Engine ()

You can also check that the gis.db SQLite database file was created on the file system.

One additional step is required for using SpatiaLite: create the geometry_columns and spatial_ref_sys
metadata tables. This is done by calling SpatiaLite’s Init SpatialMetaData function:

>>> from sqglalchemy.sqgl import select, func
>>>
>>> conn.execute (select ([func.InitSpatialMetabData()]))

Note that this operation may take some time the first time it is executed for a database. When
InitSpatialMetaData is executed again it will report an error:

InitSpatiaMetaData () error:"table spatial_ref sys already exists"

20 Chapter 4. Tutorials

GeoAlchemy2 Documentation, Release 0.8.1

You can safely ignore that error.

Before going further we can close the current connection:

>>> conn.close ()

4.3.2 Declare a Mapping

Now that we have a working connection we can go ahead and create a mapping between a Python class and a database
table.

>>> from sqglalchemy.ext.declarative import declarative_base
>>> from sglalchemy import Column, Integer, String
>>> from geoalchemy2 import Geometry
>>>
>>> Base = declarative_base ()
>>>
>>> class Lake (Base) :
_ _tablename__ = 'lake'
id = Column (Integer, primary_key=True)
name = Column (String)
geom = Column (Geometry (geometry_type='POLYGON', management=True))

This basically works in the way as with PostGIS. The difference is the management argument that must be set to
True.

Setting management to True indicates that the AddGeometryColumn and DiscardGeometryColumn man-
agement functions will be used for the creation and removal of the geometry column. This is required with SpatiaL ite.

4.3.3 Create the Table in the Database

We can now create the 1ake table in the gis . db database:

’>>> Lake.__table__ .create(engine)

If we wanted to drop the table we’d use:

’>>> Lake.__table__ .drop(engine)

There’s nothing specific to SpatiaLite here.

4.3.4 Create a Session

When using the SQLAlchemy ORM the ORM interacts with the database through a Session.

>>> from sglalchemy.orm import sessionmaker
>>> Session = sessionmaker (bind=engine)
>>> session = Session ()

The session is associated with our SpatiaLite Engine. Again, there’s nothing specific to SpatiaLite here.

4.3. SpatialLite Tutorial 21

GeoAlchemy2 Documentation, Release 0.8.1

4.3.5 Add New Objects

We can now create and insert new Lake objects into the database, the same way we’d do it using GeoAlchemy 2 with
PostGIS.

>>> lake = Lake (name='Majeur', geom='POLYGON((0O 0,1 0,1 1,0 1,0 0))")
>>> gsession.add(lake)
>>> session.commit ()

We can now query the database for Ma jeur:

>>> our_lake = session.query (Lake).filter_ by (name='Majeur') .first ()

>>> our_lake.name

u'Majeur'

>>> our_lake.geom

<WKBElement at 0x9af594c;
—'0103000000010000000500£03£0000000000
>

>>> our_lake.id

1

Let’s add more lakes:

>>> gsession.add_all ([
Lake (name='Garde', geom='POLYGON((1 0,3 0,3 2,1 2,1 0))"),
Lake (name='Orta', geom='POLYGON((3 0,6 0,6 3,3 3,3 0))")
1)

>>> gsession.commit ()

4.3.6 Query

Let’s make a simple, non-spatial, query:

>>> query = session.query (Lake) .order_by (Lake.name)
>>> for lake in query:
print (lake.name)
Garde
Majeur
Orta

Now a spatial query:

>>> from geolachemy2 import WKTElement
>>> query = session.query (Lake).filter(
func.ST_Contains (Lake.geom, WKTElement ('POINT (4 1)")))

>>> for lake in query:
print (lake.name)

Orta

Here’s another spatial query, using ST_Intersects this time:

>>> query = session.query(Lake).filter(
Lake.geom.ST_Intersects (WKTElement ('LINESTRING (2 1,4 1)"')))

(continues on next page)

22 Chapter 4. Tutorials

0000000000001

GeoAlchemy2 Documentation, Release 0.8.1

(continued from previous page)

>>> for lake in query:
print (lake.name)

Garde

Orta

We can also apply relationship functions to geocalchemy?2.elements.WKBElement. For example:

>>> lake = session.query(Lake).filter_by (name='Garde') .one ()
>>> print (session.scalar (lake.geom.ST_Intersects (WKTElement ('LINESTRING(2 1,4 1)"))))
1

session.scalar allows executing a clause and returning a scalar value (an integer value in this case).

The value 1 indicates that the lake “Garde” does intersects the LINESTRING (2 1,4 1) geometry. See the Spa-
tiaLite SQL functions reference list for more information.

4.3.7 Further Reference

* GeoAlchemy 2 ORM Tutotial: ORM Tutorial

* GeoAlchemy 2 Spatial Functions Reference: Spatial Functions
* GeoAlchemy 2 Spatial Operators Reference: Spatial Operators
* GeoAlchemy 2 Elements Reference: Elements

 SpatiaLite 4.3.0 SQL functions reference list

4.3. SpatialLite Tutorial 23

http://www.gaia-gis.it/gaia-sins/spatialite-sql-4.3.0.html

GeoAlchemy2 Documentation, Release 0.8.1

24 Chapter 4. Tutorials

20

21

22

23

24

25

26

27

28

29

31

32

34

CHAPTER B

Gallery

5.1 Gallery

5.1.1 Automatically use a function at insert or select

Sometimes the application wants to apply a function in an insert or in a select. For example, the application might
need the geometry with lat/lon coordinates while they are projected in the DB. To avoid having to always tweak the
query with a ST_Transform (), it is possible to define a TypeDecorator

from pkg resources import parse_version
import pytest

import sqglalchemy

from sglalchemy import create_engine

from sglalchemy import MetaData

from sqglalchemy import Column

from sglalchemy import Integer

from sglalchemy import func

from sqglalchemy.ext.declarative import declarative_base
from sglalchemy.orm import sessionmaker

from sqglalchemy.types import TypeDecorator

from geoalchemy2.compat import PY3

from geocalchemy2 import Geometry
from geocalchemy2 import shape

engine = create_engine ('postgresqgl://gis:gis@localhost/gis', echo=True)
metadata = MetaData (engine)

Base = declarative_base (metadata=metadata)

(continues on next page)

25

https://docs.sqlalchemy.org/en/13/core/custom_types.html#sqlalchemy.types.TypeDecorator

35

37

38

40

41

42

43

44

45

46

4

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

81

82

84

85

87

88

90

91

GeoAlchemy2 Documentation, Release 0.8.1

(continued from previous page)

class TransformedGeometry (TypeDecorator) :
"""This class 1s used to insert a ST Transform() in each insert or select."""
impl = Geometry

def _ _init__ (self, db_srid, app_srid, =*kwargs):
kwargs|["srid"] = db_srid
self.impl = self. class_.impl (x+xkwargs)
self.app_srid = app_srid
self.db_srid = db_srid

def column_expression(self, col):
"""The column_expression () method is overrided to ensure that the
SRID of the resulting WKBElement is correct"""
return getattr (func, self.impl.as_binary) (
func.ST_Transform(col, self.app_srid),
type_=self. class_ .impl(srid=self.app_srid)
srid could also be -1 so that the SRID is deduced from the
WKB data

def bind_expression(self, bindvalue):
return func.ST_Transform/(
self.impl.bind_expression (bindvalue), self.db_srid)

class ThreeDGeometry (TypeDecorator) :
"""This class 1s used to insert a ST _Force3D() in each insert."""
impl = Geometry

def bind_expression(self, bindvalue):
return func.ST_Force3D(self.impl.bind_expression (bindvalue))

class Point (Base) :

__tablename___ = "point"
id = Column (Integer, primary_key=True)
raw_geom = Column (Geometry (srid=4326, geometry_type="POINT"))
geom = Column (

TransformedGeometry (

db_srid=2154, app_srid=4326, geometry_type="POINT"))

three_d_geom = Column (

ThreeDGeometry (srid=4326, geometry_type="POINTZ", dimension=3))

session = sessionmaker (bind=engine) ()

def check_wkb (wkb, x, vy):
pt = shape.to_shape (wkb)
assert round(pt.x, 5) == x
assert round(pt.y, 5) ==y

class TestTypeDecorator () :

def setup(self):
metadata.drop_all (checkfirst=True)

(continues on next page)

26 Chapter 5. Gallery

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

GeoAlchemy2 Documentation, Release 0.8.1

(continued from previous page)

def

def

def

metadata.create_all ()

teardown (self) :
session.rollback ()
metadata.drop_all ()

create_one_point (self):

Create new point instance

= Point ()

.raw_geom = "SRID=4326;POINT (5 45)"

.geom = "SRID=4326;POINT (5 45)"

.three_d_geom = "SRID=4326;POINT (5 45)" # Insert 2D geometry into 3D column

T T T T o |

Insert point
session.add (p)
session.flush ()
session.expire (p)

return p.id

test_transform(self) :
self._create_one_point ()

Query the point and check the result

pt = session.query(Point) .one ()
assert pt.id == 1
assert pt.raw_geom.srid == 4326

check_wkb (pt.raw_geom, 5, 45)

assert pt.geom.srid == 4326
check_wkb (pt.geom, 5, 45)

Check that the data is correct in DB using raw query

g = "SELECT id, ST_ASEWKT (geom) AS geom FROM point;"

res_q = session.execute (q) .fetchone ()

assert res_g.id == 1

assert res_g.geom == "SRID=2154;POINT (857581.899319668 6435414.7478354)™"

Compare geom, raw_geom with auto transform and explicit transform
pt_trans = session.query (

Point,

Point.raw_geom,

func.ST_Transform(Point.raw_geom, 2154).label ("trans")

) .one ()
assert pt_trans[0].id == 1
assert pt_trans[0].geom.srid == 4326

check_wkb (pt_trans[0] .geom, 5, 45)

assert pt_trans[0].raw_geom.srid == 4326
check_wkb (pt_trans[0] .raw_geom, 5, 45)

assert pt_trans[l].srid == 4326
check_wkb (pt_trans[1l], 5, 45)

assert pt_trans[2].srid == 2154

(continues on next page)

5.1. Gallery 27

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

GeoAlchemy2 Documentation, Release 0.8.1

(continued from previous page)

check_wkb (pt_trans[2], 857581.89932, 6435414.74784)

@pytest .mark.skipif (
not PY3 and parse_version(str(sglalchemy.__version__)) < parse_version("1.3
(_>") 4
reason="Need sglalchemy >= 1.3")
def test_force_3d(self):
self._create_one_point ()

Query the point and check the result
pt = session.query(Point) .one ()

assert pt.id ==

assert pt.three_d_geom.srid == 4326

assert pt.three_d_geom.desc.lower () == (
'01010000a0e6100000000000000000144000000000008046400000000000000000")

Total running time of the script: (0 minutes 0.000 seconds)

5.1.2 Compute length on insert

It is possible to insert a geometry and ask PostgreSQL to compute its length at the same time. This example uses
SQLAIchemy core queries.

from sglalchemy import bindparam
from sqglalchemy import Column

from sglalchemy import create_engine
from sqglalchemy import Float

from sqglalchemy import func

from sglalchemy import Integer

from sqglalchemy import MetaData
from sqglalchemy import select

from sglalchemy import Table

from geocalchemy2 import Geometry
from geoalchemy2.shape import to_shape

engine = create_engine ('postgresgl://gis:gis@localhost/gis', echo=True)
metadata = MetaData (engine)

table = Table(
"inserts",
metadata,
Column ("id", Integer, primary_key=True),
Column ("geom", Geometry ("LINESTRING", 4326)),
Column ("distance", Float),

class TestLengthAtInsert():

def setup(self):
self.conn = engine.connect ()
metadata.drop_all (checkfirst=True)

(continues on next page)

28 Chapter 5. Gallery

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

66

67

69

70

71

72

73

74

75

76

77

78

79

GeoAlchemy2 Documentation, Release 0.8.1

(continued from previous page)

metadata.create_all ()
def teardown (self):
self.conn.close()

metadata.drop_all ()

def test_query(self):
conn = self.conn

Define geometries to insert

values = [
{"ewkt": "SRID=4326;LINESTRING(O 0, 1 0)"},
{"ewkt": "SRID=4326; LINESTRING(O O, 0 1)"}

Define the query to compute distance (without spheroid)

distance = func.ST_Length (func.ST_GeomFromText (bindparam("ewkt")), False)

table.insert ()
i = i.values (geom=bindparam("ewkt"), distance=distance)

- e
Il

Execute the query with values as parameters
conn.execute (i, values)

Check the result
g = select([table])

res = conn.execute(q) .fetchall ()

Check results

assert len(res) == 2

rl = res[0]

assert rl1[0] == 1

assert rl1[l].srid == 4326

assert to_shape(rl[1l]).wkt == "LINESTRING (0O O, 1 0O)"
assert round(rlf[2]) == 111195

r2 = res[1l]

assert r2[0] == 2

assert r2[1].srid == 4326

assert to_shape(r2[1]).wkt == "LINESTRING (O O, 0O 1)"
assert round(r2[2]) == 111195

Total running time of the script: (0 minutes 0.000 seconds)

5.1.3 Disable wrapping in select

If the application wants to build queries with GeoAlchemy 2 and gets them as strings, the wrapping of geometry
columns with a ST_AsEWKB() function might be annoying. In this case it is possible to disable this wrapping. This

example uses SQLAlchemy ORM queries.

from sqglalchemy import Column
from sqglalchemy import Integer
from sglalchemy import func
from sqglalchemy import select

(continues on next page)

5.1. Gallery

29

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

GeoAlchemy2 Documentation, Release 0.8.1

(continued from previous page)

from sqglalchemy.ext.declarative import declarative_base

from geoalchemy2 import Geometry

Base = declarative_base()

class RawGeometry (Geometry) :
"""This class 1is used to remove the 'ST _ASEWKB()'' function from select queries""

def column_expression(self, col):
return col

class Point (Base) :
__tablename__ = "point"
id = Column (Integer, primary_key=True)
geom = Column (Geometry (srid=4326, geometry_type="POINT"))
raw_geom = Column (
RawGeometry (srid=4326, geometry_type="POINT"))

def test_no_wrapping() :
Select all columns
select_query = select ([Point])

Check that the 'geom' column is wrapped by 'ST_AsSEWKB()' and that the column
'raw_geom' is not.
assert str(select_query) == (

"SELECT point.id, ST_AsSEWKB (point.geom) AS geom, point.raw_geom \n"

"FROM point"

def test_func_no_wrapping() :
Select query with function
select_query = select ([
func.ST_Buffer (Point.geom), # with wrapping (default behavior)
func.ST_Buffer (Point.geom, type_=Geometry), # with wrapping
func.ST_Buffer (Point.geom, type_=RawGeometry) # without wrapping
1)

Check the query

assert str(select_query) == (
"SELECT "
"ST_AsSEWKB (ST_Buffer (point.geom)) AS \"ST_Buffer_I\", "
"ST_ASEWKB (ST_Buffer (point.geom)) AS \"ST_Buffer_2\", "
"ST_Buffer (point.geom) AS \"ST_Buffer_3\" \n"
"FROM point"

Total running time of the script: (0 minutes 0.000 seconds)

The Gallery page shows examples of the GeoAlchemy 2’s functionalities.

30 Chapter 5. Gallery

CHAPTER O

Reference Documentation

6.1 Types

6.2 Elements

6.3 Spatial Functions
6.4 Spatial Operators

6.5 Shapely Integration

31

GeoAlchemy2 Documentation, Release 0.8.1

32 Chapter 6. Reference Documentation

CHAPTER /

Development

The code is available on GitHub: https://github.com/geoalchemy/geoalchemy?.

Contributors:

Adrien Berchet (https://github.com/adrien-berchet)
Eric Lemoine (https://github.com/elemoine)

Dolf Andringa (https://github.com/dolfandringa)
Frédéric Junod, Camptocamp SA (https://github.com/fredj)
ijl (https://github.com/ijl)

Loic Gasser (https://github.com/loicgasser)

Marcel Radischat (https://github.com/quiqua)
rapto (https://github.com/rapto)

Serge Bouchut (https://github.com/SergeBouchut)
Tobias Bieniek (https://github.com/Turbo87)

Tom Payne (https://github.com/twpayne)

Many thanks to Mike Bayer for his guidance and support! He also fostered the birth of GeoAlchemy 2.

33

https://github.com/geoalchemy/geoalchemy2
https://github.com/adrien-berchet
https://github.com/elemoine
https://github.com/dolfandringa
https://github.com/fredj
https://github.com/ijl
https://github.com/loicgasser
https://github.com/quiqua
https://github.com/rapto
https://github.com/SergeBouchut
https://github.com/Turbo87
https://github.com/twpayne
https://groups.google.com/forum/?fromgroups=#!topic/geoalchemy/k3PmQOB_FX4

GeoAlchemy2 Documentation, Release 0.8.1

34 Chapter 7. Development

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

35

	Requirements
	Installation
	What’s New in GeoAlchemy 2
	Migrate to GeoAlchemy 2

	Tutorials
	ORM Tutorial
	Core Tutorial
	SpatiaLite Tutorial

	Gallery
	Gallery

	Reference Documentation
	Types
	Elements
	Spatial Functions
	Spatial Operators
	Shapely Integration

	Development
	Indices and tables

